Skip to main content
  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

  • Home
  • About this Journal
    • General Statistics
    • Editorial Board
    • Editors
    • Information for Advertisers
    • Author Reprints
    • Commercial Reprints
    • Customer Service and Ordering Information
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • AHA Guidelines and Statements
    • Acknowledgment of Reviewers
    • Clinical Implications
    • Clinical-Pathological Conferences
    • Controversies in Hypertension
    • Editors' Picks
    • Guidelines Debate
    • Meeting Abstracts
    • Recent Advances in Hypertension
    • SPRINT Trial: the Conversation Continues
  • Resources
    • Instructions to Reviewers
    • Instructions for Authors
    • →Article Types
    • → Submission Guidelines
      • Research Guidelines
        • Minimum Information About Microarray Data Experiments (MIAME)
      • Abstract
      • Acknowledgments
      • Clinical Implications (Only by invitation)
      • Conflict(s) of Interest/Disclosure(s) Statement
      • Figure Legends
      • Figures
      • Novelty and Significance: 1) What Is New, 2) What Is Relevant?
      • References
      • Sources of Funding
      • Tables
      • Text
      • Title Page
      • Online/Data Supplement
    • →Tips for Easier Manuscript Submission
    • → General Instructions for Revised Manuscripts
      • Change of Authorship Form
    • → Costs to Authors
    • → Open Access, Repositories, & Author Rights Q&A
    • Permissions to Reprint Figures and Tables
    • Journal Policies
    • Scientific Councils
    • AHA Journals RSS Feeds
    • International Users
    • AHA Newsroom
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
  • Facebook
  • Twitter

  • My alerts
  • Sign In
  • Join

  • Advanced search

Header Publisher Menu

  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

Hypertension

  • My alerts
  • Sign In
  • Join

  • Facebook
  • Twitter
  • Home
  • About this Journal
    • General Statistics
    • Editorial Board
    • Editors
    • Information for Advertisers
    • Author Reprints
    • Commercial Reprints
    • Customer Service and Ordering Information
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • AHA Guidelines and Statements
    • Acknowledgment of Reviewers
    • Clinical Implications
    • Clinical-Pathological Conferences
    • Controversies in Hypertension
    • Editors' Picks
    • Guidelines Debate
    • Meeting Abstracts
    • Recent Advances in Hypertension
    • SPRINT Trial: the Conversation Continues
  • Resources
    • Instructions to Reviewers
    • Instructions for Authors
    • →Article Types
    • → Submission Guidelines
    • →Tips for Easier Manuscript Submission
    • → General Instructions for Revised Manuscripts
    • → Costs to Authors
    • → Open Access, Repositories, & Author Rights Q&A
    • Permissions to Reprint Figures and Tables
    • Journal Policies
    • Scientific Councils
    • AHA Journals RSS Feeds
    • International Users
    • AHA Newsroom
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
Editorial Commentaries

Central Aortic Blood Pressure and Cardiovascular Risk

A Paradigm Shift?

Alberto Avolio
Download PDF
https://doi.org/10.1161/HYPERTENSIONAHA.107.108910
Hypertension. 2008;51:1470-1471
Originally published May 21, 2008
Alberto Avolio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters

Jump to

  • Article
    • Acknowledgments
    • Footnotes
    • References
  • Info & Metrics
  • eLetters
Loading

The provocative proposition of “hypertension is a myth” has generated many a debate and editorial commentary.1,2 In contrast, the realities of high blood pressure and the associated cardiovascular risks have been ascertained from data obtained by the conventional brachial cuff sphygmomanometer. Notwithstanding the inherent limitations of the technique, there is yet no equivalent and suitable device that can be universally accepted to replace the cuff sphygmomanometer for practical and noninvasive measurement of arterial blood pressure in large population groups and with wide clinical applications. Attempts at complementing information obtained from cuff measurements have resorted to basic physiological studies in humans and experimental animals, which have shown that pulsatile blood flow in arteries can be described in terms of characteristics common to systems of wave propagation.3 These concepts explain the complex relationship between oscillatory blood pressure and flow, the difference in pressure wave shape, and the increase in pulse pressure between the aorta and peripheral arteries. Such wave propagation characteristics can be described in terms of mathematical entities known as transfer functions, with associated assumptions of stability and linearity.3,4

The study by McEniery et al in this issue of Hypertension5 uses methodologies for both the cuff sphygmomanometer and transfer functions4 to determine central aortic pressure from the brachial cuff pressure measurement and the tonometric radial artery pressure pulse in >10 000 adults of age range 18 to 101 years. This is the largest study of its kind with conventional pressure measurements and pulse waveform data. The study allows analysis that can produce potentially groundbreaking results and poses important and possibly perplexing and challenging questions related not only to the role of central aortic pressure as an improved measure of the hemodynamic burden on the ejecting ventricle but also on the interpretation of guidelines for the management of hypertension as a cardiovascular risk factor with blood pressure as determined from the conventional brachial cuff.

One of the main features of this study5 is that it addresses the difference in pulse pressure between the site of conventional measurement and the central aorta. The ratio of aortic pulse pressure to brachial pulse pressure is independent of calibration and depends only on the reliable detection of the peripheral pressure pulse and the methodology used to estimate the central aortic pressure pulse. The tonometric sensor used by the investigators has been used extensively in many other studies over the last 2 decades and can detect highly accurate signals from the radial artery and show age-related changes in the arterial pulse wave shape in human population groups in the hands of adequately trained operators.4 The study by McEniery et al5 would seem to have satisfied this requirement. The cited study validating the use of the brachial transfer function shows close agreement between measured and estimated central pressure.6 The relevant and important feature of this validation study is that it was done with simultaneous invasive measurements of both radial artery pressure and aortic pressure, using manometer systems with a high frequency response and external pressure sensors, which were referenced to atmospheric pressure. Thus, the calibration was done with actual gauge pressures with no confounding factors related to the relative height of pressure sensors or other systematic or random errors, as can occur even with high-fidelity intravascular catheter-tip transducers. Hence, the methodology used in this validation study6 was a specific validation of the mathematical transfer function used to generate the central aortic pressure waveform. This is different from validating the technique using a noninvasive radial pulse calibrated with a sphygmomanometric cuff pressure (and with the inherent associated errors) and then comparing the estimated values with measured central aortic pressure, because this incurs the inherent calibration errors that are independent of the transfer function but are part of the chain of the system components.

The study5 found that, although the difference between peripheral and central pulse pressure decreases with age, it does not vanish in old age. It bottoms out in the age decade of 50 to 60 years, after which it is essentially constant, corresponding with an estimated average difference of 11 mm Hg in men an 8 mm Hg in women. Furthermore, for each age group, there is a considerable variability in the pulse pressure ratio. It is this variability that becomes relevant in determining the extent of overlap of central pressure values between the categories describing the various levels of blood pressure as defined by the recent European Society of Hypertension and of the European Society of Cardiology guidelines for management of hypertension.7 This is a crucial finding of the study, because the blood pressure bands in the guidelines are based entirely on the conventional measurement of brachial cuff pressure. Results indicate that, just on systolic values alone, there would be 32% of men and 10% of women who would be considered to have normal brachial systolic pressures and, therefore, not treated but would be classified as having stage 1 hypertension based on equivalent central aortic systolic pressure and, thus, would be considered for treatment. The numbers are much more striking when comparing the high-normal category and stage 1 hypertension, with 78% of men and 63% of women who would be considered to be in the high reference range of systolic pressure but would be considered to be hypertensive based on equivalent central pressure values. Although these proportions can be quite striking in terms of those that could be exposed to cardiovascular risk and not detected or treated, the opposite is also true, because the overlap is also relevant to those who would undergo treatment based on cuff pressure values but would fall under a lower risk category when assessed in terms of central pressures (although the study does not report these proportions).

Recent studies have shown the importance of central aortic pressure and its implications in assessing the efficacy of antihypertensive treatment with respect to cardiovascular risk factors.8 Results of the study by McEniery et al5 highlight the issue of relating a measurement of brachial pressure to the categories in the guidelines, given this quite large range of overlap because of pulse amplification. The amplification is because of the frequency dependency of the transfer function,4,6 and because of the overall general stability of the transfer function, any difference in pulse amplification is attributable only to the frequency content of the pulse waveform, ie, the waveshape. An important implication of this study is that, whereas sphygmomanometric cuff pressure will continue to be used as the most practical surrogate measure of arterial blood pressure, other useful and potentially highly relevant information may be obtained from the registration of the arterial pulse waveform. Furthermore, whereas central pressure values may be estimated with regression models that do not necessarily include the time-varying pulse waveform, these do not explain the whole variation. Indeed, we have shown previously9 that stepwise multiple regression models, including height, weight, heart rate, systolic and diastolic cuff pressure, and age, explain 76% of the variability. This agrees with the figure of 73% obtained in the study by McEniery et al5 and implies that the entire peripheral pulse waveform is required for a reliable estimation of central aortic pressure. This has further implications on the heart rate dependency on pulse amplification10 in individual pressure measurements and subsequent classification according to the guidelines.

The study by McEniery et al5 is timely, because there is a necessity to quantify the value of central aortic pressure, given the increasing interest in the field. The authors recognize some of the study limitations, such as its cross-sectional design, but the overall results indicate that it can form an important platform on which to launch further investigations on the relevance of central blood pressure. The study describes, for the first time, the unique feature of using the physiological phenomenon of the variable difference of the pulse pressure between the aorta and upper limb arteries. This is used to describe aging changes and to quantify the relevance of central aortic pressure estimated from measured values of conventional brachial cuff pressure.

A general question raised by the study of McEniery et al5 is whether this and other similar studies could lead to a type of paradigm shift in the understanding of the relevance of conventional blood pressure measurement by the introduction of central aortic blood pressure. There is no question that, with the introduction of the brachial cuff and auscultatory techniques, Drs Scipione Riva-Roci and Nikolai Korotkoff caused a shift from essentially observation phenomena to quantification of the effects of blood pressure on cardiovascular disease by providing the ability to have numeric values for systolic and diastolic pressure and by the ubiquitous use of the sphygmomanometer throughout the 20th century. The addition, in the 21st century, of the earlier technology of sphygmography, pioneered during the 19th century,3 could provide a practical and potentially more powerful means for a better stratification of cardiovascular risk. With respect to the mythological propositions of hypertension or high blood pressure, one could well recall the remark of an earlier gazer of the heavens in the early 17th century, who put into question the long established Aristotelian geocentric view of the universe, and, when taken away to be imprisoned, is said to have whispered, sotto voce, “E pur si muove!” Whether these words were actually uttered by Gallileo Galilei or are entirely apocryphal, they do remind us that, whether we call it hypertension or high blood pressure, ultimately it is the truth that inevitably leads to paradigm shifts and not its mere perception from a distance.

Acknowledgments

Disclosures

None.

Footnotes

  • The opinions expressed in this editorial are not necessarily those of the editors or of the American Heart Association.

References

  1. ↵
    Doyle AE. Hypertension: the realities. Aust N Z J Med. 1983; 13: 185–186.
    OpenUrlPubMed
  2. ↵
    O'Rourke MF. Hypertension is a myth; high(er) arterial pressure is the problem. Aust N Z J Med. 1984; 14: 69–70.
    OpenUrlPubMed
  3. ↵
    Nichols WW, O'Rourke MF. McDonald’s Blood Flow in Arteries. 5th ed. London: Hodder Arnold: 2005.
  4. ↵
    Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, Kass DA. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation. 1997; 95: 1827–1836.
    OpenUrlAbstract/FREE Full Text
  5. ↵
    McEniery CM, Yasmin, McDonnell B, Munnery M, Wallace SM, Rowe CV, Cockcroft JR, Wilkinson IB; on behalf of the Anglo-Cardiff Collaboration Trial Investigators. Central pressure: variability and impact of cardiovascular risk factors: the Anglo-Cardiff Collaborative Trial II. Hypertension. 2008; 51: 1476–1482.
    OpenUrlAbstract/FREE Full Text
  6. ↵
    Pauca AL, O'Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001; 38: 932–937.
    OpenUrlAbstract/FREE Full Text
  7. ↵
    Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder RE, Boudier HA, Zanchetti A; for the ESH-ESC Task Force on the Management of Arterial Hypertension. 2007 ESH-ESC Practice Guidelines for the Management of Arterial Hypertension: ESH-ESC Task Force on the Management of Arterial Hypertension. J Hypertens. 2007; 25: 1751–1762.
    OpenUrlCrossRefPubMed
  8. ↵
    Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, Hughes AD, Thurston H, O'Rourke M. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006; 113: 1213–1225.
    OpenUrlAbstract/FREE Full Text
  9. ↵
    Camacho F, Avolio A, Lovell NH. Estimation of pressure pulse amplification between aorta and brachial artery using stepwise multiple regression models. Physiol Meas. 2004; 25: 879–889.
    OpenUrlCrossRefPubMed
  10. ↵
    Wilkinson IB, Mohammad NH, Tyrrell S, Hall IR, Webb DJ, Paul VE, Levy T, Cockcroft JR. Heart rate dependency of pulse pressure amplification and arterial stiffness. Am J Hypertens. 2002; 15: 24–30.
    OpenUrlCrossRefPubMed
View Abstract
Back to top
Previous ArticleNext Article

This Issue

Hypertension
June 2008, Volume 51, Issue 6
  • Table of Contents
Previous ArticleNext Article

Jump to

  • Article
    • Acknowledgments
    • Footnotes
    • References
  • Info & Metrics
  • eLetters

Article Tools

  • Print
  • Citation Tools
    Central Aortic Blood Pressure and Cardiovascular Risk
    Alberto Avolio
    Hypertension. 2008;51:1470-1471, originally published May 21, 2008
    https://doi.org/10.1161/HYPERTENSIONAHA.107.108910

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
  • Article Alerts
    Log in to Email Alerts with your email address.
  • Save to my folders

Share this Article

  • Email

    Thank you for your interest in spreading the word on Hypertension.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Central Aortic Blood Pressure and Cardiovascular Risk
    (Your Name) has sent you a message from Hypertension
    (Your Name) thought you would like to see the Hypertension web site.
  • Share on Social Media
    Central Aortic Blood Pressure and Cardiovascular Risk
    Alberto Avolio
    Hypertension. 2008;51:1470-1471, originally published May 21, 2008
    https://doi.org/10.1161/HYPERTENSIONAHA.107.108910
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo

Related Articles

Cited By...

Subjects

  • Cardiology
    • Etiology
      • Hypertension
        • Hypertension

Hypertension

  • About Hypertension
  • Instructions for Authors
  • AHA CME
  • Guidelines and Statements
  • Permissions
  • Journal Policies
  • Email Alerts
  • Open Access Information
  • AHA Journals RSS
  • AHA Newsroom

Editorial Office Address:
7272 Greenville Ave.
Dallas, TX 75231
email: hypertension@heart.org

Information for:
  • Advertisers
  • Subscribers
  • Subscriber Help
  • Institutions / Librarians
  • Institutional Subscriptions FAQ
  • International Users
American Heart Association Learn and Live
National Center
7272 Greenville Ave.
Dallas, TX 75231

Customer Service

  • 1-800-AHA-USA-1
  • 1-800-242-8721
  • Local Info
  • Contact Us

About Us

Our mission is to build healthier lives, free of cardiovascular diseases and stroke. That single purpose drives all we do. The need for our work is beyond question. Find Out More about the American Heart Association

  • Careers
  • SHOP
  • Latest Heart and Stroke News
  • AHA/ASA Media Newsroom

Our Sites

  • American Heart Association
  • American Stroke Association
  • For Professionals
  • More Sites

Take Action

  • Advocate
  • Donate
  • Planned Giving
  • Volunteer

Online Communities

  • AFib Support
  • Garden Community
  • Patient Support Network
  • Professional Online Network

Follow Us:

  • Follow Circulation on Twitter
  • Visit Circulation on Facebook
  • Follow Circulation on Google Plus
  • Follow Circulation on Instagram
  • Follow Circulation on Pinterest
  • Follow Circulation on YouTube
  • Rss Feeds
  • Privacy Policy
  • Copyright
  • Ethics Policy
  • Conflict of Interest Policy
  • Linking Policy
  • Diversity
  • Careers

©2018 American Heart Association, Inc. All rights reserved. Unauthorized use prohibited. The American Heart Association is a qualified 501(c)(3) tax-exempt organization.
*Red Dress™ DHHS, Go Red™ AHA; National Wear Red Day ® is a registered trademark.

  • PUTTING PATIENTS FIRST National Health Council Standards of Excellence Certification Program
  • BBB Accredited Charity
  • Comodo Secured