Increased Renin Production in Mice With Deletion of Peroxisome Proliferator-Activated Receptor-γ in Juxtaglomerular Cells
Jump to

Abstract
We recently found that endogenous (free fatty acids) and pharmacological (thiazolidinediones) agonists of nuclear receptor Peroxisome proliferator-activated receptor (PPAR)γ stimulate renin transcription. In addition, the renin gene was identified as a direct target of PPARγ. The mouse renin gene is regulated by PPARγ through a distal enhancer direct repeat closely related to consensus PPAR response element (PPRE). In vitro studies demonstrated that PPARγ knockdown stimulated PPRE-driven transcription. These data predicted that deficiency of PPARγ would upregulate mouse renin expression. Consistent with these observations knockdown of PPARγ increased the transcription of a reporter gene driven by the mouse renin PPRE-like motif in vitro. To study the impact of PPARγ on renin production in vivo, we used a cre/lox system to generate double-transgenic mice with disrupted PPARγ locus in renin-producing juxtaglomerular (JG) cells of the kidney (RC-PPARγfl/fl mice). We provide evidence that PPARγ expression was effectively reduced in JG cells of RC-PPARγfl/fl mice. Fluorescent immunohistochemistry showed stronger renin signal in RC-PPARγfl/fl than in littermate control RC-PPARγwt/wt mice. Renin mRNA levels and plasma renin concentration in RC-PPARγfl/fl mice were almost 2-fold higher than in littermate controls. Arterial blood pressure and pressure control of renal vascular resistance, which play decisive roles in the regulation of renin production were indistinguishable between RC-PPARγwt/wt and RC-PPARγfl/fl mice. These data demonstrate that the JG-specific PPARγ deficiency results in increased mouse renin expression in vivo thus corroborating earlier in vitro results. PPARγ appears to be a relevant transcription factor for the control of renin gene in JG cells.
The nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ is the molecular master switch of adipocyte growth and differentiation,1 but an important role of PPARγ in the cardiovascular system is gaining recognition.2,3 A series of compelling studies has demonstrated that PPARγ is involved in the regulation of vascular tone and in the pathogenesis of vascular diseases such as arterial hypertension or atherosclerosis.2–6 Thiazolidinediones, which are pharmacological PPARγ agonists, have various and to some extent opposing effects on blood pressure, vascular permeability and cardiac function.2,3,6–10
Renin is a key factor in the regulation of blood pressure and fluid/electrolyte homeostasis.11 Renin is produced mainly in the kidney cortex by a small population of epithelial-like cells called “juxtaglomerular” (JG) located in the glomerular end of the afferent arteriole. The transcription of the renin gene is one of the regulated checkpoints in the overall renin synthesis.12 We recently identified PPARγ as a transcription factor that controls renin expression in renin-producing cells.13,14 We hypothesize that the effect of PPARγ on renin gene transcription is an additional molecular mechanism whereby PPARγ influences the function of the cardiovascular system.
PPARγ targets two functionally different cis-acting elements in the 5′-flanking region of the renin promoter. First, a direct repeat motif highly similar to canonical PPAR response element (PPRE) is located in a distal regulatory region known as the renal renin enhancer.13,15 We identified a second, atypical PPARγ-binding site termed Pal3 in the proximal renin promoter.13 Thus, the renin gene contains two diverse and widely separated PPARγ-binding sequences. The renin Pal3 and PPRE motifs have different protein-binding and functional properties.14 The proximal promoter Pal3 site is decisive for the regulation of human renin transcription. On the contrary, the mouse renin gene was targeted by PPARγ through the enhancer PPRE-like sequence because the mouse Pal3 element was transcriptionally silent in response to PPARγ activation. PPARγ knockdown decreased Pal3-driven transcription but unexpectedly increased PPRE-driven transcription in renin-producing cells.14 The increase of PPRE-driven transcription on PPARγ deficiency correlated with increased protein binding to PPRE (presumably of other nuclear receptors), a phenomenon that was not observed with Pal3.14
Altogether our findings suggested that PPARγ influences renin transcription in a species-dependent manner.14 Because the information regarding PPARγ was obtained using in vitro systems, it is necessary to determine whether PPARγ regulates renin expression in vivo. To study the in vivo relevance of PPARγ in the cellular control of renin gene expression we used a conditional deletion. This approach provides an opportunity to discriminate the role of PPARγ in the cellular control of renin transcription from PPARγ-dependent influence on systemic signals known to regulate renin production. We generated double-transgenic mice with a selective PPARγ knockout in the renin-producing cells.
Methods
Cell Culture
Human renin-producing Calu-6 cells (ATCC no. HTB-56) were cultured in Eagle’s minimal essential medium supplemented with 10% FBS, sodium pyruvate, 100 U/mL penicillin, 100 μg/mL streptomycin, and 1% nonessential amino acids at 37°C in a humidified atmosphere containing 5% CO2.
Plasmid
The construct mPPREmPal3 represents a firefly luciferase reporter gene driven by a 46-bp-long mouse renin enhancer fragment containing a cAMP response element and the PPRE-like element (originally described as Ec/Eb and also termed hormone response element [HRE])13,14 cloned into the 5′ end of the minimal human renin promoter hRenMin in which Pal3 is replaced by mouse Pal3.
Animals
The mice expressing cre recombinase under the control of endogenous renin promoter (Ren-cre) or PPARγ-floxed allele (obtained through The Jackson Laboratory) were described previously.16,17 All animal experiments were performed according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the local ethics committee. Two- to 4-month-old F3 to F7 male mice were used for the experiments.
Blood Pressure Measurements
Systolic blood pressure was measured by the tail-cuff method. Mice were put in a steel cover on a 30°C prewarmed platform and trained for 7 days between 9:00 am and 12:00 am before the measurement. Data from 5 to 8 measurements per animal were averaged for a single value.
Statistics
All data are presented as means±SEM. Differences were analyzed by ANOVA and the Student’s unpaired t test. P<0.05 was considered significant.
Results
Knockdown of PPARγ Upregulates the Basal Activity of a Reporter Gene Driven by the Mouse Renin PPRE-Like Sequence In Vitro
We found previously that PPARγ deficiency increases PPRE-driven transcription and that mouse renin gene is targeted by PPARγ at the enhancer PPRE-like sequence.13,14 To provide further evidence that the mouse renin gene is upregulated by PPARγ deficiency in renin-producing cells, we used a reporter driven by a human renin promoter construct containing the mouse renin enhancer PPRE-like site (mPPREmPal3). Knockdown of PPARγ by sequence-specific small interfering (si)RNA in the renin-producing Calu-6 cells led to an almost 2-fold increase in the transcription of mPPREmPal3 construct (Figure 1A and 1B). These data demonstrated that the transcription of mouse renin PPRE-like-driven reporter is upregulated by PPARγ deficiency in vitro.
Figure 1. Effect of PPARγ knockdown on mouse renin PPRE-like driven transcription. Calu-6 cells were transfected with nontargeting siRNA as control (siControl) or with PPARγ sequence-specific siRNA (siPPARγ) and with the mPPREmPal3 construct. A, Efficacy of the PPARγ knockdown. Representative Western blots of protein extracts probed with anti-PPARγ or anti-β-actin (used for loading control) antibodies. B, Effect of PPARγ knockdown on mPPREmPal3 activity. *P<0.05 (n=8 from 2 separate experiments). RLA indicates relative luciferase activity.
Generation of JG-Specific PPARγ Knockout Mice
To study the role of PPARγ deficiency in the cell-specific control of the renin gene in vivo, we used the cre/lox recombination system to generate mice with deletion of PPARγ in JG cells. Mice expressing cre recombinase under the control of the renin locus were crossed to a second transgenic strain in which PPARγ exons 1 and 2 were flanked by loxP sites.16,17 The floxed PPARγ allele is deleted upon expression of cre recombinase. It has been previously shown that expression of cre recombinase from the endogenous renin locus targets recombination to the renin-producing cells.17 Nine genotypes were obtained from crossing of double-heterozygous mice (see Figure S1A in the online Data Supplement, available at http://hyper.ahajournals.org). Because we needed endogenous renin as a readout, animals with only 2 of the 9 possible genotypes in the offspring were used: as littermate control, mice with heterozygous renin/cre alleles and wild-type homozygous PPARγ alleles (RC-PPARγwt/wt); and as JG-specific PPARγ knockout, mice with heterozygous renin/cre alleles and floxed homozygous PPARγ alleles (RC-PPARγfl/fl). Cre-positive mice were used in all of the studies to ensure that the littermate control and the PPARγ-deficient mice contained one allele of Ren1 and one allele of Ren2 (see online Figure S1A). As expected, recombined PPARγ transcript was reproducibly detected only in kidneys of RC-PPARγfl/fl mice by qualitative RT-PCR (Figure 2A and online Figure S1B). Besides cortex, recombination in the kidneys of RC-PPARγfl/fl mice was also detected in inner medulla where renin is known to be weakly expressed in collecting ducts (Figure 2B).17 These data demonstrated that recombination in kidney is not necessarily restricted to the JG cells but may be present in other cell types where the renin/cre allele is also active during development (eg, in larger arteries) or in adults.17,18 Renin-expressing cells represent a very small fraction of total cells in the adult kidney. Consistent with this, PPARγ mRNA level decreased only slightly in total kidney, cortex, or medulla of adult RC-PPARγfl/fl mice (online Figure S1C and S1D). This suggested that cre-mediated recombination in cell types other than JG would be minimal. We used single-cell RT-PCR to determine whether PPARγ is expressed by JG cells. By this method we detected PPARγ mRNA in single JG cells of wild-type mice, whereas no signal was detected in the negative control samples thus demonstrating the specificity of the signal (Figure 2C). We also tested 5 different anti-PPARγ antibodies on histological kidney sections but could not reproducibly detect any specific signal (data not shown). We next examined PPARγ expression in primary cultures of native JG cells. In these JG cell-enriched preparations, PPARγ mRNA from RC-PPARγfl/fl was ≈30% of the level in RC-PPARγwt/wt mice (Figure 2D). These results were confirmed by single-cell RT-PCR. In this study, only 30% of the JG cells (2 of 7 tested) isolated from RC-PPARγfl/fl animals expressed PPARγ (Figure 2E), whereas all JG cells isolated from the RC-PPARγwt/wt mice were PPARγ-positive (4 of 4 tested; see online Figure S1E). The partial retention of PPARγ expression in JG cells of RC-PPARγfl/fl mice may be attributable to single-allele excision that, however, could not be discerned by the qualitative single cell RT-PCR. Based on these assays, we concluded that PPARγ expression is efficiently knocked-out in the renin-producing JG cells of RC-PPARγfl/fl mice.
Figure 2. Recombination of PPARγ allele and PPARγ expression in RC-PPARγwt/wt and RC-PPARγfl/fl mice. A, Qualitative PCR-based screening for PPARγ-recombined transcript in different organs of RC-PPARγfl/fl mice. B, PPARγ recombination in renal cortex and inner medulla total RNA samples isolated from RC-PPARγfl/fl mice. C, PPARγ mRNA is expressed in native JG cells of wild-type mice. Lane 1, molecular weight marker; lanes 2 to 7, RT-PCR of serial dilutions of RNA isolated from single JG cells with PPARγ-specific primers; lane 8, “minus” RT (the sample was “reverse-transcribed” in the absence of transcriptase before amplification [negative control]); lane 9, water was reverse-transcribed and amplified (negative control). D, PPARγ mRNA levels in primary cultures of native JG cells isolated from RC-PPARγwt/wt (n=4) or RC-PPARγfl/fl (n=4) mice. PPARγ and ribosomal L32 (internal control) mRNA levels were quantified by real-time RT-PCR. *P<0.05. E, Single-cell RT-PCR with renin-specific (top) or PPARγ-specific (bottom) primers of total RNA extracted from 7 different JG cells of RC-PPARγfl/fl mice. The bands at the bottom of the gels represent primer dimers. St indicates length standard.
Increased Renin Production in RC-PPARγfl/fl Mice
After confirming the correct targeting of the PPARγ knockout to the JG cells, we studied the renin production in RC-PPARγwt/wt and RC-PPARγfl/fl mice. Immunohistochemical staining of whole kidney slices revealed increased number of renin-positive glomeruli in RC-PPARγfl/fl mice compared with RC-PPARγwt/wt mice (see online Figure S2A and S2B). A few glomeruli (≈3 to 4, or 1% to 5% of total number per slice) in RC-PPARγfl/fl mice contained renin-producing cells located not only in juxtaglomerular position but also upstream in the afferent arteriolar wall (Figure 3A). This arrangement of the renin-producing cells, known as recruitment, is typically seen at chronic stimulation of renin expression in vivo. To confirm these semiquantitative findings we measured renal renin mRNA levels and plasma renin concentration (Figure 3B and 3C, respectively). Both methods demonstrated unequivocally that there is a significant increase of renin in RC-PPARγfl/fl compared to RC-PPARγwt/wt mice. Allele-specific TaqMan assays revealed an equivalent upregulation of Ren1 and Ren2 and confirmed an increase in total renin mRNA (see online Figure S3).
Figure 3. Renin expression in RC-PPARγwt/wt and RC-PPARγfl/fl mice. A, Costaining for renin (green) and vascular smooth muscle α-actin (red). Dashed circles show the position of glomeruli (G); arrows indicate renin immunoreactivity. B, Renal renin mRNA levels in RC-PPARγwt/wt (n=6) and RC-PPARγfl/fl (n=8) mice. Renin and ribosomal L32 (internal control) mRNA levels were quantified by real-time RT-PCR. *P<0.05. C, Plasma renin concentration (PRC) in RC-PPARγwt/wt (n=8) and RC-PPARγfl/fl (n=8) mice. *P<0.05.
Hematocrit Is Not Different Between RC-PPARγwt/wt and RC-PPARγfl/fl Mice
Recombined PPARγ transcript was detected in the inner medulla of the kidney (Figure 2B) and could be explained by the transcriptional activity of the renin gene observed in medullary structures such as collecting ducts. Notably, PPARγ is also expressed in collecting duct principal cells.19,20 PPARγ has been reported to induce the expression of γENaC subunit and presumably the salt/water reabsorption in the terminal portion of the nephron.19,20 However, there was no difference in the hematocrits in RC-PPARγwt/wt and RC-PPARγfl/fl mice, thus excluding the possibility that the recombination of PPARγ in the medulla has resulted in significant water deficit (Figure 4).
Figure 4. Hematocrits in RC-PPARγwt/wt and RC-PPARγfl/fl mice. Blood samples were obtained through mandibular bleeding. The data are means±SD; n=8 in each group.
Arterial Blood Pressure and Pressure-Dependent Control of Renal Blood Flow Are Not Different Between RC-PPARγwt/wt and RC-PPARγfl/fl Mice
Although the finding that PPARγ deletion in JG cells results in increased renin expression in vivo is compatible with cell culture data, it is still possible that systemic or local factors are affected by the genetic manipulation and thus are responsible for the altered renin production in RC-PPARγfl/fl mice. Arterial blood pressure plays a central role in the control of renin synthesis and secretion.11 Interference with PPARγ function in the vasculature is accompanied by changes in blood pressure.4–6,21 Therefore, we measured the blood pressure in conscious mice. The average systolic blood pressure (mean±SD) was not significantly different between RC-PPARγwt/wt and RC-PPARγfl/fl animals (120.7±6 versus 117±7.6 mm Hg, P=0.24; Figure 5A). These data are representative for several measurements, with a total of almost 20 animals per group performed either early in the morning or in the afternoon (data not shown). Therefore, it is unlikely that a minor decrease in blood pressure could have stimulated renin production in RC-PPARγfl/fl mice. In addition, in the isolated perfused kidney, we did not find any significant discrepancy in the pressure-dependent control of either renin release or renal vascular resistance between RC-PPARγwt/wt and RC-PPARγfl/fl mice (Figure 5B and 5C, respectively). Altogether, these results suggest that baroreceptor mechanisms are not responsible for the increased renin observed in RC-PPARγfl/fl mice.
Figure 5. Arterial blood pressure and renal perfusion parameters of RC-PPARγwt/wt and RC-PPARγfl/fl mice. A, Systolic blood pressure (SBP) measured by tail-cuff method. Each mark represents the value (average of 5 to 8 measurements) for a single animal (n=10 for each genotype). B and C, Pressure-dependent regulation of renin secretion rate (B) and renal vascular resistance (C) in isolated perfused kidneys of RC-PPARγwt/wt and RC-PPARγfl/fl mice (n=3 and 4, respectively).
Discussion
We have showed here that PPARγ knockdown upregulates the transcription of a luciferase reporter driven by the mouse renin PPRE-like sequence. We found previously that RNA interference-mediated knockdown of PPARγ in the renin-producing cell line Calu-6 upregulated the transcription of a reporter gene driven by consensus PPRE.14 Thus, similarly to PPARγ agonists,13,14 the PPARγ deficiency upregulates the mouse renin PPRE-driven transcription. Although, at first glance, these findings appear to be counter-intuitive, they are in fact congruent to earlier data. Results from our group demonstrated that the protein binding to PPRE increases in response to PPARγ deficiency.14 Because PPRE is generally targeted by many nuclear receptors, we suggested that the latter bind with higher affinity to PPRE at low cellular level of PPARγ, thus resulting in stronger trans-activation. In agreement with this model knockdown of the PPARγ interaction partner retinoid X receptor-α also increased the binding to PPRE and upregulated the PPRE-driven transcription.14 One more possible explanation is provided by studies on dominant-negative PPARγ mutants.22,23 In the absence of ligand, PPARγ is bound to PPRE complexed to corepressors such as NCoR (nuclear corepressor) and SMRT (silencing mediator of retinoid and thyroid receptors). These corepressors are replaced by transcriptional coactivators (cAMP-response element-binding protein-binding protein [CBP] and steroid receptor coactivator-1 [SRC-1]) on binding of agonists to PPARγ. Dominant-negative PPARγ mutants have stronger affinity for corepressors which interfere with the recruitment of coactivators in the presence of ligand.22,23 It is therefore possible that the knockdown of PPARγ diminishes the amount of transcriptional corepressors bound to PPRE and thus results in trans-activation. The potential relevance of this mechanism, however, remains to be elucidated.
Based on these in vitro data and on our earlier findings showing that PPARγ targeted mouse renin promoter at a PPRE-like motif in the distal enhancer,13 we predicted that PPARγ deficiency should increase the expression of the mouse renin gene in vivo. To test this hypothesis, we crossed two transgenic strains to obtain mice (RC-PPARγfl/fl) with a specific inactivation of PPARγ in the renin-producing JG cells by using the cre/lox recombination system. As expected, PPARγ mRNA was significantly diminished in primary cultures of native JG cells isolated from JG-specific PPARγ knockout mice, and the majority of the JG cells in these animals did not express PPARγ. This finding provided evidence for the correct targeting of recombination. As predicted by the cell culture data, renin expression in kidneys of RC-PPARγfl/fl mice was increased compared to their littermate controls. Consistently, plasma renin concentration in RC-PPARγfl/fl animals was also elevated. On the basis of the cell-specific gene silencing observed, the increased renin production in RC-PPARγfl/fl mice could be primarily attributed to the deficiency of PPARγ in their JG cells.
The recombination of the PPARγ allele in medullary structures, such as the collecting duct, could possibly be responsible for the increased renin production in RC-PPARγfl/fl mice. Several lines of evidence suggest, however, that this scenario is quite unlikely. First, hematocrits were not different between RC-PPARγwt/wt and RC-PPARγfl/fl mice, thus arguing against possible water deficit in the knockout animals. Second, the baseline plasma and urine parameters of collecting duct-specific PPARγ-deficient mice were indistinguishable from those of their inbred wild-type controls.20 Third, mice with collecting duct-selective deletion of αENaC-isoform, which is critical for the membrane translocation of the ENaC channel, neither have impaired Na+, K+, or water balance nor were protected against thiazolidinedione-induced water retention.24 We could not formally rule out that impaired tubular control of renin production through the tubular macula densa mechanism is causative for the increased renin in RC-PPARγfl/fl mice. However, macula densa seems to be critical for the short-term, rather than for the chronic regulation of renin synthesis.25
Recombination of PPARγ allele was observed in aortas and adrenals of RC-PPARγfl/fl animals (see online Figure S1B). This is in agreement with earlier data indicating that the renin promoter is active in these organs.17,26 Because recombinant transcript was detected in some, but not all, RC-PPARγfl/fl mice, we suggested that this is most likely attributable to a “dilution” of cre/renin-expressing cells in adulthood. The same may be the case with other organs where the renin gene is expressed, such as brain or testis, but where no PPARγ recombination was found.17 Consistent with this suggestion, the robust expression of renin in the adrenal cortex during fetal life occurs mostly in the large fetal zone, which regresses after birth and is replaced by other cells presumably originating from the outer cortex.27,28 In adult life, cells that expressed renin (and therefore cre recombinase) persist in some stripes along the adrenal cortex, with numerous adrenal cells in between that never expressed renin and/or cre (spared zones).17
We could not exclude that PPARγ locus remained completely intact in the media cells of the afferent arteriole wall upstream of the JG cells, because renin is produced in larger arteries of the kidney during embryonic development and early postnatal life.17,18 Moreover, PPARγ is known to be expressed, albeit weakly, in the vascular media layer, and the specific inactivation of PPARγ in smooth muscle cells has been reported to result in impaired vascular reactivity.5,6,21 Changes in blood pressure induce reciprocal responses in renin production in a way that increased blood pressure inhibits, whereas lowered blood pressure stimulates renin expression and release.11 Because renin, the limiting factor of the renin-angiotensin system, is causally involved in the regulation of blood pressure through the vasoconstrictor angiotensin II, the blood pressure-dependent control of the renin gene represents a feedback mechanism, which is decisive for the overall cardiovascular homeostasis. We provided three lines of evidence that, if present, the partial inactivation of PPARγ gene in renal and extrarenal vessels does not have impact on the pressure control of renin in RC-PPARγfl/fl mice. First, the systemic blood pressure was not significantly different between RC-PPARγwt/wt and RC-PPARγfl/fl animals. Second, the pressure-dependent control of renal blood flow and consecutively renal vascular resistance were similar in the two genotypes. Third, the pressure-regulated renin release was also undistinguishable between RC-PPARγwt/wt and RC-PPARγfl/fl mice, suggesting that there is no shift in the pressure/flow rate sensitivity of the PPARγ-deficient afferent arterioles. In addition, the last two findings provided indirect evidence against possible dysregulation of local vasoactive mediator systems known to control renin production, such as NO, prostanoids, adenosine, or endothelins in RC-PPARγfl/fl mice (see online Figure S4).
One could have expected that the hyperreninemia should have increased the blood pressure in the JG-specific PPARγ knockout mice. However, transgenic mouse models demonstrated that primary changes in renin/renin-angiotensin system activity do not obligatory lead to blood pressure dysregulation, basically because plasma renin-angiotensin system is only one of the players in the complex regulation of circulation.29–31
Thus, the most plausible explanation for the increased renin expression in RC-PPARγfl/fl mice that we report here is the deficiency of PPARγ in the renin-producing cells. On the basis of the compatible in vitro and in vivo data, we conclude that the deficiency of PPARγ in renin-producing cells increases the expression of the mouse renin gene.
Perspectives
The results presented here provide evidence that PPARγ is relevant for the regulation of renin transcription in JG cells in vivo. Our data demonstrated that RC-PPARγfl/fl mice could be used as a model for studying the PPARγ in the regulation of renin production in vivo and validated previous cell culture findings.13,14 The in vitro results also predicted discrepant modes of action of PPARγ on mouse and human genes.14 Therefore, we are currently working on a transgenic model that should reveal whether PPARγ regulates the expression of the renin gene in a species-specific manner.
Acknowledgments
The expert technical assistance of Anna M'Bangui, Anelia Todorova, Katharina Ehm, Marlies Hamann, Sandra Mayer, and Sabine Harlander is gratefully acknowledged.
Sources of Funding
This work was supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 699, Project B1.
Disclosures
None.
- Received July 2, 2009.
- Revision received July 23, 2009.
- Accepted December 11, 2009.
References
- ↵
Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 2000; 14: 1293–1307.
- ↵
Duan SZ, Usher MG, Mortensen RM. Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ Res. 2008; 102: 283–294.
- ↵
- ↵
Duan SZ, Ivashchenko CY, Whitesall SE, D'Alecy LG, Duquaine DC, Brosius FC III, Gonzalez FJ, Vinson C, Pierre MA, Milstone DS, Mortensen RM. Hypotension, lipodystrophy, and insulin resistance in generalized PPARgamma-deficient mice rescued from embryonic lethality. J Clin Invest. 2007; 117: 812–822.
- ↵
- ↵
- ↵
Duan SZ, Ivashchenko CY, Russell MW, Milstone DS, Mortensen RM. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice. Circ Res. 2005; 97: 372–379.
- ↵
Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, Le Winter M, Porte D, Semenkovich CF, Smith S, Young LH, Kahn R. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Circulation. 2003; 108: 2941–2948.
- ↵
Ryan MJ, Didion SP, Mathur S, Faraci FM, Sigmund CD. PPAR(gamma) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension. 2004; 43: 661–666.
- ↵
- ↵
Hackenthal E, Paul M, Ganten D, Taugner R. Morphology, physiology, and molecular biology of renin secretion. Physiol Rev. 1990; 70: 1067–1116.
- ↵
Pan L, Gross KW. Transcriptional regulation of renin: an update. Hypertension. 2005; 45: 3–8.
- ↵
Todorov VT, Desch M, Schmitt-Nilson N, Todorova A, Kurtz A. Peroxisome proliferator-activated receptor-gamma is involved in the control of renin gene expression. Hypertension. 2007; 50: 939–944.
- ↵
- ↵
Shi Q, Gross KW, Sigmund CD. Retinoic acid-mediated activation of the mouse renin enhancer. J Biol Chem. 2001; 276: 3597–3603.
- ↵
He W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM, Evans RM. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A. 2003; 100: 15712–15717.
- ↵
- ↵
- ↵
- ↵
Zhang H, Zhang A, Kohan DE, Nelson RD, Gonzalez FJ, Yang T. Collecting duct-specific deletion of peroxisome proliferator-activated receptor gamma blocks thiazolidinedione-induced fluid retention. Proc Natl Acad Sci U S A. 2005; 102: 9406–9411.
- ↵
Chang L, Villacorta L, Zhang J, Garcia-Barrio MT, Yang K, Hamblin M, Whitesall SE, D'Alecy LG, Chen YE. Vascular smooth muscle cell-selective peroxisome proliferator-activated receptor-gamma deletion leads to hypotension. Circulation. 2009; 119: 2161–2169.
- ↵
Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, Maslen GL, Williams TD, Lewis H, Schafer AJ, Chatterjee VK, O'Rahilly S. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999; 402: 880–883.
- ↵
Gurnell M, Wentworth JM, Agostini M, Adams M, Collingwood TN, Provenzano C, Browne PO, Rajanayagam O, Burris TP, Schwabe JW, Lazar MA, Chatterjee VK. A dominant-negative peroxisome proliferator-activated receptor gamma (PPARgamma) mutant is a constitutive repressor and inhibits PPARgamma-mediated adipogenesis. J Biol Chem. 2000; 275: 5754–5759.
- ↵
Vallon V, Hummler E, Rieg T, Pochynyuk O, Bugaj V, Schroth J, Dechenes G, Rossier B, Cunard R, Stockand J. Thiazolidinedione-induced fluid retention is independent of collecting duct alphaENaC activity. J Am Soc Nephrol. 2009; 20: 721–729.
- ↵
Oppermann M, Mizel D, Kim SM, Chen L, Faulhaber-Walter R, Huang Y, Li C, Deng C, Briggs J, Schnermann J, Castrop H. Renal function in mice with targeted disruption of the A isoform of the Na-K-2Cl co-transporter. J Am Soc Nephrol. 2007; 18: 440–448.
- ↵
Castrop H, Oppermann M, Weiss Y, Huang Y, Mizel D, Lu H, Germain S, Schweda F, Theilig F, Bachmann S, Briggs J, Kurtz A, Schnermann J. Reporter gene recombination in juxtaglomerular granular and collecting duct cells by human renin promoter-Cre recombinase transgene. Physiol Genomics. 2006; 25: 277–285.
- ↵
- ↵
- ↵
Cole JM, Khokhlova N, Sutliff RL, Adams JW, Disher KM, Zhao H, Capecchi MR, Corvol P, Bernstein KE. Mice lacking endothelial ACE: normal blood pressure with elevated angiotensin II. Hypertension. 2003; 41: 313–321.
- ↵
Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006; 86: 747–803.
- ↵
Pluznick JL, Zou DJ, Zhang X, Yan Q, Rodriguez-Gil DJ, Eisner C, Wells E, Greer CA, Wang T, Firestein S, Schnermann J, Caplan MJ. Functional expression of the olfactory signaling system in the kidney. Proc Natl Acad Sci U S A. 2009; 106: 2059–2064.
This Issue
Jump to
Article Tools
- Increased Renin Production in Mice With Deletion of Peroxisome Proliferator-Activated Receptor-γ in Juxtaglomerular CellsMichael Desch, Andrea Schreiber, Frank Schweda, Kirsten Madsen, Ulla G. Friis, Eric T. Weatherford, Curt D. Sigmund, Maria Luisa Sequeira Lopez, R. Ariel Gomez and Vladimir T. TodorovHypertension. 2010;55:660-666, originally published February 18, 2010https://doi.org/10.1161/HYPERTENSIONAHA.109.138800
Citation Manager Formats
Share this Article
- Increased Renin Production in Mice With Deletion of Peroxisome Proliferator-Activated Receptor-γ in Juxtaglomerular CellsMichael Desch, Andrea Schreiber, Frank Schweda, Kirsten Madsen, Ulla G. Friis, Eric T. Weatherford, Curt D. Sigmund, Maria Luisa Sequeira Lopez, R. Ariel Gomez and Vladimir T. TodorovHypertension. 2010;55:660-666, originally published February 18, 2010https://doi.org/10.1161/HYPERTENSIONAHA.109.138800