Skip to main content
  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

  • Home
  • About this Journal
    • General Statistics
    • Editorial Board
    • Editors
    • Information for Advertisers
    • Author Reprints
    • Commercial Reprints
    • Customer Service and Ordering Information
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • AHA Guidelines and Statements
    • Acknowledgment of Reviewers
    • Clinical Implications
    • Clinical-Pathological Conferences
    • Controversies in Hypertension
    • Editors' Picks
    • Guidelines Debate
    • Meeting Abstracts
    • Recent Advances in Hypertension
    • SPRINT Trial: the Conversation Continues
  • Resources
    • Instructions to Reviewers
    • Instructions for Authors
    • →Article Types
    • → Submission Guidelines
      • Research Guidelines
        • Minimum Information About Microarray Data Experiments (MIAME)
      • Abstract
      • Acknowledgments
      • Clinical Implications (Only by invitation)
      • Conflict(s) of Interest/Disclosure(s) Statement
      • Figure Legends
      • Figures
      • Novelty and Significance: 1) What Is New, 2) What Is Relevant?
      • References
      • Sources of Funding
      • Tables
      • Text
      • Title Page
      • Online/Data Supplement
    • →Tips for Easier Manuscript Submission
    • → General Instructions for Revised Manuscripts
      • Change of Authorship Form
    • → Costs to Authors
    • → Open Access, Repositories, & Author Rights Q&A
    • Permissions to Reprint Figures and Tables
    • Journal Policies
    • Scientific Councils
    • AHA Journals RSS Feeds
    • International Users
    • AHA Newsroom
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
  • Facebook
  • Twitter

  • My alerts
  • Sign In
  • Join

  • Advanced search

Header Publisher Menu

  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

Hypertension

  • My alerts
  • Sign In
  • Join

  • Facebook
  • Twitter
  • Home
  • About this Journal
    • General Statistics
    • Editorial Board
    • Editors
    • Information for Advertisers
    • Author Reprints
    • Commercial Reprints
    • Customer Service and Ordering Information
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • AHA Guidelines and Statements
    • Acknowledgment of Reviewers
    • Clinical Implications
    • Clinical-Pathological Conferences
    • Controversies in Hypertension
    • Editors' Picks
    • Guidelines Debate
    • Meeting Abstracts
    • Recent Advances in Hypertension
    • SPRINT Trial: the Conversation Continues
  • Resources
    • Instructions to Reviewers
    • Instructions for Authors
    • →Article Types
    • → Submission Guidelines
    • →Tips for Easier Manuscript Submission
    • → General Instructions for Revised Manuscripts
    • → Costs to Authors
    • → Open Access, Repositories, & Author Rights Q&A
    • Permissions to Reprint Figures and Tables
    • Journal Policies
    • Scientific Councils
    • AHA Journals RSS Feeds
    • International Users
    • AHA Newsroom
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
Original Article

Chronic Interactions Between Carotid Baroreceptors and Chemoreceptors in Obesity Hypertension

Thomas E. Lohmeier, Radu Iliescu, Ionut Tudorancea, Radu Cazan, Adam W. Cates, Dimitrios Georgakopoulos, Eric D. Irwin
Download PDF
https://doi.org/10.1161/HYPERTENSIONAHA.116.07232
Hypertension. 2016;HYPERTENSIONAHA.116.07232
Originally published May 9, 2016
Thomas E. Lohmeier
From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, “Gr. T. Popa,” Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.).
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Radu Iliescu
From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, “Gr. T. Popa,” Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.).
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ionut Tudorancea
From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, “Gr. T. Popa,” Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.).
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Radu Cazan
From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, “Gr. T. Popa,” Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.).
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam W. Cates
From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, “Gr. T. Popa,” Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.).
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dimitrios Georgakopoulos
From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, “Gr. T. Popa,” Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.).
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric D. Irwin
From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, “Gr. T. Popa,” Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.).
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Supplemental Materials
  • Info & Metrics
  • eLetters

Jump to

  • Article
  • Supplemental Materials
  • Info & Metrics
  • eLetters
Loading

Abstract

Carotid bodies play a critical role in protecting against hypoxemia, and their activation increases sympathetic activity, arterial pressure, and ventilation, responses opposed by acute stimulation of the baroreflex. Although chemoreceptor hypersensitivity is associated with sympathetically mediated hypertension, the mechanisms involved and their significance in the pathogenesis of hypertension remain unclear. We investigated the chronic interactions of these reflexes in dogs with sympathetically mediated, obesity-induced hypertension based on the hypothesis that hypoxemia and tonic activation of carotid chemoreceptors may be associated with obesity. After 5 weeks on a high-fat diet, the animals experienced a 35% to 40% weight gain and increases in arterial pressure from 106±3 to 123±3 mm Hg and respiratory rate from 8±1 to 12±1 breaths/min along with hypoxemia (arterial partial pressure of oxygen=81±3 mm Hg) but eucapnia. During 7 days of carotid baroreflex activation by electric stimulation of the carotid sinus, tachypnea was attenuated, and hypertension was abolished before these variables returned to prestimulation values during a recovery period. After subsequent denervation of the carotid sinus region, respiratory rate decreased transiently in association with further sustained reductions in arterial partial pressure of oxygen (to 65±2 mm Hg) and substantial hypercapnia. Moreover, the severity of hypertension was attenuated from 125±2 to 116±3 mm Hg (45%–50% reduction). These findings suggest that hypoxemia may account for sustained stimulation of peripheral chemoreceptors in obesity and that this activation leads to compensatory increases in ventilation and central sympathetic outflow that contributes to neurogenically mediated hypertension. Furthermore, the excitatory effects of chemoreceptor hyperactivity are abolished by chronic activation of the carotid baroreflex.

  • baroreflex
  • blood pressure
  • carotid bodies
  • hypertension
  • obesity
  • sympathetic nervous system
  • Received January 26, 2016.
  • Revision received February 9, 2016.
  • Accepted February 29, 2016.
  • © 2016 American Heart Association, Inc.
Back to top
Next Article

Current Issue

Hypertension
May 2018, Volume 71, Issue 5
  • Table of Contents
Next Article

Jump to

  • Article
  • Supplemental Materials
  • Info & Metrics
  • eLetters

Article Tools

  • Print
  • Citation Tools
    Chronic Interactions Between Carotid Baroreceptors and Chemoreceptors in Obesity Hypertension
    Thomas E. Lohmeier, Radu Iliescu, Ionut Tudorancea, Radu Cazan, Adam W. Cates, Dimitrios Georgakopoulos and Eric D. Irwin
    Hypertension. 2016;HYPERTENSIONAHA.116.07232, originally published May 9, 2016
    https://doi.org/10.1161/HYPERTENSIONAHA.116.07232

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
  • Article Alerts
    Log in to Email Alerts with your email address.
  • Save to my folders

Share this Article

  • Email

    Thank you for your interest in spreading the word on Hypertension.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Chronic Interactions Between Carotid Baroreceptors and Chemoreceptors in Obesity Hypertension
    (Your Name) has sent you a message from Hypertension
    (Your Name) thought you would like to see the Hypertension web site.
  • Share on Social Media
    Chronic Interactions Between Carotid Baroreceptors and Chemoreceptors in Obesity Hypertension
    Thomas E. Lohmeier, Radu Iliescu, Ionut Tudorancea, Radu Cazan, Adam W. Cates, Dimitrios Georgakopoulos and Eric D. Irwin
    Hypertension. 2016;HYPERTENSIONAHA.116.07232, originally published May 9, 2016
    https://doi.org/10.1161/HYPERTENSIONAHA.116.07232
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo

Related Articles

Cited By...

Subjects

  • Basic, Translational, and Clinical Research
    • Basic Science Research
    • Mechanisms
    • Pathophysiology
    • Autonomic Nervous System
    • Animal Models of Human Disease

Hypertension

  • About Hypertension
  • Instructions for Authors
  • AHA CME
  • Guidelines and Statements
  • Permissions
  • Journal Policies
  • Email Alerts
  • Open Access Information
  • AHA Journals RSS
  • AHA Newsroom

Editorial Office Address:
7272 Greenville Ave.
Dallas, TX 75231
email: hypertension@heart.org

Information for:
  • Advertisers
  • Subscribers
  • Subscriber Help
  • Institutions / Librarians
  • Institutional Subscriptions FAQ
  • International Users
American Heart Association Learn and Live
National Center
7272 Greenville Ave.
Dallas, TX 75231

Customer Service

  • 1-800-AHA-USA-1
  • 1-800-242-8721
  • Local Info
  • Contact Us

About Us

Our mission is to build healthier lives, free of cardiovascular diseases and stroke. That single purpose drives all we do. The need for our work is beyond question. Find Out More about the American Heart Association

  • Careers
  • SHOP
  • Latest Heart and Stroke News
  • AHA/ASA Media Newsroom

Our Sites

  • American Heart Association
  • American Stroke Association
  • For Professionals
  • More Sites

Take Action

  • Advocate
  • Donate
  • Planned Giving
  • Volunteer

Online Communities

  • AFib Support
  • Garden Community
  • Patient Support Network
  • Professional Online Network

Follow Us:

  • Follow Circulation on Twitter
  • Visit Circulation on Facebook
  • Follow Circulation on Google Plus
  • Follow Circulation on Instagram
  • Follow Circulation on Pinterest
  • Follow Circulation on YouTube
  • Rss Feeds
  • Privacy Policy
  • Copyright
  • Ethics Policy
  • Conflict of Interest Policy
  • Linking Policy
  • Diversity
  • Careers

©2018 American Heart Association, Inc. All rights reserved. Unauthorized use prohibited. The American Heart Association is a qualified 501(c)(3) tax-exempt organization.
*Red Dress™ DHHS, Go Red™ AHA; National Wear Red Day ® is a registered trademark.

  • PUTTING PATIENTS FIRST National Health Council Standards of Excellence Certification Program
  • BBB Accredited Charity
  • Comodo Secured