Baroreceptor Influences on Oxytocin and Vasopressin Secretion

Mariana Morris and Natalie Alexander

The objective of these studies was to investigate the role of arterial baroreceptors in the control of neurohypophyseal secretion. The effect of sinoaortic denervation on basal and osmotic-induced release of oxytocin and vasopressin and on blood pressure was determined. Hypertonic or isotonic saline was infused intravenously into sham-operated or denervated rats 3 days after surgery. Plasma oxytocin and vasopressin were measured at 5 and 15 minutes after the infusion. The control levels of oxytocin were increased in the denervated rats, but vasopressin levels were not significantly altered. The vasopressin and oxytocin responses to hypertonic saline were greater after baroreceptor denervation. Plasma oxytocin was increased from 4.7±0.9 to 72.2±8.7 pg/ml in the denervated rats and from 1.8±0.3 to 39.9±6.7 pg/ml in the sham-operated control group at 5 minutes after the infusion (p<0.01). The plasma vasopressin response to hypertonic saline was 7.1±0.6 pg/ml in the sham-operated versus 11.1±1.6 pg/ml in the denervated rats (p<0.05). There was no difference between sham-operated and denervated rats in the effect of hypertonic saline on plasma sodium and hematocrit. Mean arterial blood pressure was increased after sinoaortic denervation (116.3±4.2 mm Hg in the sham-operated vs. 138.2±8.3 mm Hg in the denervated rats, p<0.05); however, there was no difference in the pressor response to hypertonic saline. These results show that the baroreceptor system influences the secretion of both oxytocin and vasopressin, with effects on basal secretion as well as the response to an osmotic stimulus. These changes may be important in the regulation of cardiovascular and fluid balance under conditions of baroreceptor deficiency. (Hypertension 1989;13:110-114)

Information on the status of the cardiovascular system is conveyed to the central nervous system by afferent fibers in the glossopharyngeal and vagus nerves. These primary afferents terminate mainly in the nucleus tractus solitarii with secondary pathways projecting to higher brain structures. Although these pathways are not completely known, brainstem noradrenergic centers are known to receive visceral afferent information and to send projections to the paraventricular and the supraoptic hypothalamic neurohypophyseal nuclei.

Information on the role of baroreceptor input is provided by studies of the effects caused by surgical interruption of the arterial baroreceptor nerves.

Results show that sinoaortic denervation (SAD) has widespread effects on both the cardiovascular and endocrine systems; there are increases in blood pressure, sympathetic nerve activity, and vasopressin secretion, while plasma prolactin and atrial natriuretic peptide concentrations are reduced.

The objective of the present study was to further explore the nature of baroreceptor influences on the control of the neurohypophyseal axis. The effect of SAD on the response of oxytocin and vasopressin to a peripheral osmotic challenge was determined.

Materials and Methods

Male Wistar rats (250–300 g; Charles River Inc., Boston, Massachusetts) were housed singly under conditions of controlled light (12-hour light/dark cycle) and temperature. They were fed normal rat chow (Purina Inc., St. Louis, Missouri) and tap water ad libitum. Either SAD or sham surgery was performed as previously described according to the method of Krieger. After the surgery, the SAD and sham-operated rats were divided into matched pairs. The food and water available to the sham-operated rats was matched to the intake of the SAD rats. This was done to eliminate the possibility of intake-induced
changes in the responses. Jugular, and in some cases aortic, catheters (PE 50) were inserted while the rats were under ether anesthesia 24 hours before the experiment.

The rats were tested at 3 days after surgery. The experimental protocol was as follows: The rats were brought into the laboratory in their home cage (2 hours before the experiment). Hypertonic saline or isotonic saline (180 μl/100 g body wt of 18% NaCl or 0.9% NaCl) was infused over a 20-40-second period into conscious animals. The rats were decapitated either 5 or 15 minutes later and blood was collected in chilled tubes containing EDTA (final concentration 2 mg/ml). A small sample was collected in ammonium heparin for the measurement of plasma sodium. Hematocrit was also measured. The blood was centrifuged at 4° C and the plasma stored at -70° C. The neurohypophysis was removed and stored frozen at -70° C.

In a separate experiment, the effect of the hypertonic stimulus on blood pressure was measured via an aortic catheter. In this case, the catheter was connected to a Micron pressure transducer (Micron Inc., Los Angeles, California) and mean arterial blood pressure was recorded with a two-channel Gould Recorder (Gould Inc., Cleveland, Ohio). The lability of mean arterial pressure over time was an indication of successful denervation. Blood pressure was recorded continuously for 30 minutes before and 60 minutes after the infusion. Cardiovascular and endocrine measurements were not obtained from the same rats because of the possibility that stress might influence the hormonal response.

Plasma and tissue levels of oxytocin and vasopressin were measured by specific and sensitive radioimmunoassays. These assays were performed according to previously published methods. Iodine-125-labeled peptides were purchased from New England Nuclear (Du Pont Inc., Wilmington, Delaware) and the synthetic standards from Bachem (Bachem Inc., Torrance, California). The plasma samples (1 ml) were extracted before radioimmunoassay with the acetone/petroleum ether method.

The neurohypophysis was homogenized in 0.1 N HCl and the extract diluted before radioimmunoassay. The tissue and plasma extracts were dried with a Speed Vac Concentrator (Savant Instrs., Inc., Farmingdale, New York). Statistical analysis was by two-way analysis of variance (ANOVA) and a post hoc test (Duncan's multiple range test). The plasma oxytocin data was subjected to log transformation before analysis. A p value of <0.05 was considered significant.

Results

An increase in the control levels of plasma oxytocin was produced by SAD while plasma vasopressin was not significantly changed (Figures 1 and 2). Basal levels are those measured in samples from sham-operated and SAD rats infused with isotonic saline. The increase in oxytocin was noted only in the samples collected at 5 minutes after infusion (1.8±0.3 pg/ml in sham-operated vs. 4.7±0.9 pg/ml in SAD rats, p<0.01).

![Figure 1](http://hyper.ahajournals.org/)

Figure 1. Bar graph showing changes in plasma oxytocin in response to intravenous isotonic (IS) or hypertonic saline (HS). A two-way analysis of variance on log-transformed data showed a significant effect of type (sham-operated vs. sinoaortic denervation [SAD] rats) and treatment (IS vs. HS); p<0.001, F=27.7 and p<0.001, F=51.3, respectively. n, 8-13 rats/group. **p<0.01 for sham-operated vs. SAD rats and +p<0.01 for IS vs. HS treatment (Duncan's multiple range test). Values are mean±SEM.

![Figure 2](http://hyper.ahajournals.org/)

Figure 2. Bar graph showing changes in plasma vasopressin in response to intravenous isotonic (IS) or hypertonic saline (HS). A two-way analysis of variance showed a significant effect of type (sham-operated vs. sinoaortic denervation [SAD] rats) and treatment (IS vs. HS); p<0.001, F=17.9 and p<0.001, F=51.1, respectively. n, 8-14 rats/group. *p<0.05 and **p<0.01 for sham-operated vs. SAD rats. *p<0.05 and +++p<0.01 for IS vs. HS treatment (Duncan's multiple range test). Values are mean±SEM.
TABLE 1. Effect of Intravenous Hypertonic Saline on Plasma Sodium, Hematocrit, and Neurohypophyseal Peptides

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sham-operated rats</th>
<th>SAD rats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Saline (5 min)</td>
</tr>
<tr>
<td>Na+ (meq/l)</td>
<td>133.7±0.5</td>
<td>143.1±0.6*</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>42.7±0.4</td>
<td>39.4±0.3*</td>
</tr>
<tr>
<td>Neurohypophyseal peptides (ng/gland)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxytocin</td>
<td>480.1±39.4</td>
<td>544.7±58.5</td>
</tr>
<tr>
<td>Vasopressin</td>
<td>714.7±44.5</td>
<td>645.4±37.0</td>
</tr>
</tbody>
</table>

Data for the control group are pooled from the 5- and 15-minute time periods after isotonic saline. There were no differences among the groups (two-way analysis of variance), n, 6-8/experimental group and n, 16-19/control group.

SAD, sinoaortic denervation.

*p<0.01.
†p<0.05.

The hormonal responses to an osmotic challenge were also altered by SAD. The oxytocin response to intravenous hypertonic saline was markedly increased in the denervated rat (Figure 1; two-way ANOVA, p<0.001, F=27.7). The greatest change was noted at 5 minutes with levels of 72.2±8.7 pg/ml in the SAD compared with 39.9±6.7 pg/ml in the sham-operated rats. There was also an increase in the vasopressin response to hypertonic saline after denervation (Figure 2; two-way ANOVA, p<0.001, F=17.9). Plasma vasopressin was 7.1±0.6 pg/ml in the sham-operated group compared with 11.1±1.6 pg/ml in the SAD group at 5 minutes after the hypertonic saline infusion. However, the stimulation of plasma vasopressin was less than that observed for oxytocin. There was a 15-20-fold increase in oxytocin compared with a twofold change in vasopressin.

Plasma sodium was increased after hypertonic saline as expected; however, there was no statistical difference between the two groups (Table 1). Hematocrit was reduced by the osmotic stimulus; again, there was no significant difference between the sham-operated and SAD rats (Table 1). There was no difference in neurohypophyseal oxytocin and vasopressin at the time points measured (Table 1).

Hypertonic saline also produced an increase in blood pressure (Table 2). Basal mean arterial pressure was elevated in the SAD rats, 138.2±8.3 mm Hg versus 116.3±4.2 mm Hg in the sham-operated rats (p<0.05). The peak pressor response occurred at approximately 5 minutes after infusion. There was no difference in the responses between the sham-operated and SAD groups (percentage change from control).

Discussion

These results confirm that the arterial baroreceptor system has potent influences on the neurohypophyseal axis under control and stimulated conditions. Denervation of the baroreceptor nerves caused a modest increase in the basal levels of oxytocin and a marked stimulation of osmotic-induced release of both oxytocin and vasopressin.

Previous results from this laboratory showed that SAD was associated with an increase in the circulating levels of vasopressin. This change was most prevalent in the early postoperative periods when blood pressure was highest. Thus, baroreceptor input to the hypothalamus was thought to be inhibitory, with removal resulting in a stimulation of secretion. However, in the present study, vasopressin levels were not significantly elevated at 3 days after denervation. The reason for the difference in results is not known. SAD did have an effect on oxytocin secretion; there was a modest rise in plasma oxytocin in the denervated rat.

In contrast to the rather small changes in basal hormone secretion elicited by denervation, there was a pronounced increase in the response to intravenous hypertonic saline. It is not known whether baroreceptor denervation specifically alters the osmoreceptors or acts through other mechanisms. It would be valuable to test the effect of other stimuli (i.e., hemorrhage or angiotensin) known to activate the neurohypophyseal system to determine whether there was a generalized change in sensitivity after denervation. In other studies in the dog and rabbit, SAD did not influence the vasopressin response to hemorrhage.
These results confirm previous studies, which show that osmotic changes cause a greater release of oxytocin and oxytocin-neurophysin rather than vasopressin.12-14 The physiological significance of this finding is not clear. However, oxytocin does influence salt and water excretion15 and has effects on blood pressure and cardiac output.16 This neuro peptide also caused an activation of cells in the dorsal vagal nucleus of the brain stem.17

One must also consider the interactions between osmotic, volume, and pressor stimuli. Previous results have shown that osmotic and volume factors are involved in the regulation of vasopressin and oxytocin secretion.18-19 For example, volume depletion, which lowers blood pressure, potentiated the response to an osmotic stimulus. The results of the present study are complicated by the fact that the osmotic challenge also has cardiovascular effects. Thus, feedback from the increase in blood pressure could modulate the hormonal responses. In the denervated animal this afferent signal would be absent, resulting in an increased hormonal response. However, this does not explain the elevation of basal secretion. The fact that the pressor responses were similar in the two groups is also puzzling. One would predict an increased cardiovascular response in the absence of baroreceptor reflexes.

Another hormone thought to be involved in the regulation of salt and water balance is atrial natriuretic peptide, which is increased by both volume and osmotic stimuli.7,20 Its secretion is also affected by denervation, which results in a reduction in basal levels and the response to hypertonic saline.7 There is evidence that atrial natriuretic peptide may inhibit vasopressin and oxytocin secretion, particularly under stimulated conditions.21,22 Thus, the deficit of atrial natriuretic peptide after denervation may play a role in the change in neurohypophysial secretion. The net effects of hormones would be to conserve water and electrolytes and increase blood pressure.

The neural pathways by which the baroreceptor nerves influence the hypothalamus are not understood. Extensive immunohistochemical studies show that there are connections between the brainstem catecholaminergic centers and the paraventricular and supraoptic hypothalamic nuclei.1,23 The A2 noradrenergic center (nucleus tractus solitarii region) is thought to project primarily to the parvocellular regions of the paraventricular nucleus while the A1 region (ventrolateral medulla) innervates the magnocellular areas in the supraoptic and paraventricular nuclei. There are connections between the A2 and A1 regions so that visceral afferent information can be transmitted centrally to the neurosecretory cells. Work from our laboratory also shows that SAD produces changes in peptide and catecholamine content in these hypothalamic regions.5 Electrophysiological studies suggest that baroreceptor nerves specifically influence vasopressin, but not oxytocin neurons. Stimulation of the A1 region of the brainstem causes a specific activation of phasically firing cells in the supraoptic nucleus.24 This type of firing pattern is characteristic of vasopressin neurons.25 In contrast, an elevation of blood pressure results in an inhibition of firing of only the vasopressin type cells.26,27 In addition, histochemical studies show that the neurons from the A1 region innervate the vasopressinergic portions of the paraventricular and supraoptic nuclei and lesions of this area cause an increase in vasopressin secretion.28 Thus, the evidence all points toward a relation between baroreceptors and vasopressin. This is the first study to demonstrate that baroreceptor nerves also influence oxytocin secretion. This interaction would not be predicted on the basis of anatomical and neurophysiological studies. However, in most of the electrophysiological studies, hormonal parameters were not monitored and only a limited number of cell types were investigated.

The exact mechanism by which baroreceptor input modulates hormone secretion is not known. It is probably the result of changes in neural input to key hypothalamic regions. The results emphasize the complexity of the interactions between the peripheral and central systems in the regulation of cardiovascular and endocrine balance.

Acknowledgment

We recognize the excellent assistance of Ms. Jill Clodfelter.

References

Key Words • baroreceptors • oxytocin • vasopressin • osmotic regulation • blood pressure • pituitary gland
THE NEWLY DIAGNOSED HYPERTENSIVE

THERAPY SHOULD NOT CHANGE THE WAY HE FEELS

For a Brief Summary of Prescribing Information, please see the last page of this advertisement.
LOWER HIS BLOOD PRESSURE, NOT HIS PERFORMANCE
FOR MANY HYPERTENSIVE PATIENTS
START WITH ONCE-A-DAY

VASOTEC
(ENALAPRIL MALEATE | MSD)

VASOTEC is generally well tolerated and not characterized by certain undesirable effects associated with selected agents in other antihypertensive classes. Thus, VASOTEC is being prescribed as initial therapy for hypertension by an increasing number of physicians.

VASOTEC generally has little or no effect on a patient's physical or mental activity, since it is not characterized by certain subjective symptoms (such as malaise or drowsiness) which may interfere with such activity. This highly favorable tolerability profile may be related to the specificity of action of VASOTEC on the renin-angiotensin-aldosterone system.

VASOTEC is contraindicated in patients who are hypersensitive to this product and in patients with a history of angioedema related to previous treatment with an ACE inhibitor.

Patients at risk for excessive hypotension, sometimes associated with oliguria and/or progressive azotemia and rarely with acute renal failure and/or death, include those with heart failure, hyponatremia, high-dose diuretic therapy, recent intensive diuresis or increase in diuretic dose, renal dialysis, or severe volume and/or salt depletion of any etiology. It may be advisable to eliminate the diuretic (except in heart failure patients), reduce the diuretic dose, or increase salt intake cautiously before initiating therapy with VASOTEC in patients at risk for excessive hypotension who are able to tolerate such adjustments.

In patients at risk for excessive hypotension, therapy should be started under very close medical supervision, and such patients should be followed closely for the first two weeks of treatment and whenever the dose of enalapril and/or diuretic is increased.

In using VASOTEC, consideration should be given to the fact that another ACE inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and the available data are insufficient to show that VASOTEC does not have a similar risk.

If angioedema of the face, extremities, lips, tongue, glottis, and/or larynx develops, VASOTEC should be promptly discontinued and the patient carefully observed until the swelling disappears. Angioedema associated with laryngeal edema may be fatal.

For more details, including information on treatment, see the Brief Summary of Prescribing Information on the last page of this advertisement.

Copyright © 1988 by Merck & Co., Inc.
Lithium and Agents Increasing Serum Potassium: Caution be exercised when lithium is used concomitantly with VASOTEC and serum lithium levels should be monitored during the first few weeks of treatment and thereafter if the dose of lithium is increased.

Hypotension: Patients on Diuretic Therapy: The possibility of hypotension with enalapril can be minimized by either discontinuing the diuretic or increasing the salt intake prior to initiation of treatment with enalapril. If it is necessary to continue the diuretic, provide the patient with instructions to take the first dose of enalapril after dosing times. In some patients treated with VASOTEC, commonly some reduction in blood pressure, especially with the first dose, but this effect was generally transient. However, in patients with severe hypotension or at risk for excessive hypotension, sometimes associated with oliguria and/or progressive azotemia and rarely with acute renal failure and/or death, renal function should be monitored during the first few weeks of therapy.

Surgical patients with hypertension or heart failure have an increased risk of postoperative hypotension. This risk may be low in patients with preserved renal function. Dosage reduction/increments and/or discontinuation of the diuretic and/or VASOTEC may be required.

Evaluation of Patients with Heart Failure or heart failure should always include assessment of renal function. (See DOSE AND ADMINISTRATION.)

Hypertension: Elevated serum potassium values (≥ 5.7 mEq/l) was observed in approximately 1% of hypertensive patients in clinical trials. Serum potassium values ≥ 6.5 mEq/l has been observed in <0.1% of patients. A decrease in serum potassium may occur with enalapril.

Hypokalemia: Patients on Diuretics: The possibility of hypokalemia with enalapril may be minimized by either discontinuing the diuretic or increasing the salt intake prior to initiation of treatment with enalapril. It is necessary to continue the diuretic, provide the patient with instructions to take the first dose of VASOTEC after dosing times. In some patients treated with VASOTEC, commonly some reduction in blood pressure. However, in patients with severe hypotension or at risk for excessive hypotension, sometimes associated with oliguria and/or progressive azotemia and rarely with acute renal failure and/or death, renal function should be monitored during the first few weeks of therapy.

Surgical patients with hypertension or heart failure have an increased risk of postoperative hypotension. This risk may be low in patients with preserved renal function. Dosage reduction/increments and/or discontinuation of the diuretic and/or VASOTEC may be required.

Evaluation of Patients with Heart Failure or heart failure should always include assessment of renal function. (See DOSE AND ADMINISTRATION.)

Hypertension: Elevated serum potassium values (≥ 5.7 mEq/l) was observed in approximately 1% of hypertensive patients in clinical trials. Serum potassium values ≥ 6.5 mEq/l has been observed in <0.1% of patients. A decrease in serum potassium may occur with enalapril.

Hypokalemia: Patients on Diuretics: The possibility of hypokalemia with enalapril may be minimized by either discontinuing the diuretic or increasing the salt intake prior to initiation of treatment with enalapril. It is necessary to continue the diuretic, provide the patient with instructions to take the first dose of VASOTEC after dosing times. In some patients treated with VASOTEC, commonly some reduction in blood pressure. However, in patients with severe hypotension or at risk for excessive hypotension, sometimes associated with oliguria and/or progressive azotemia and rarely with acute renal failure and/or death, renal function should be monitored during the first few weeks of therapy.

Surgical patients with hypertension or heart failure have an increased risk of postoperative hypotension. This risk may be low in patients with preserved renal function. Dosage reduction/increments and/or discontinuation of the diuretic and/or VASOTEC may be required.

Evaluation of Patients with Heart Failure or heart failure should always include assessment of renal function. (See DOSE AND ADMINISTRATION.)

Hypertension: Elevated serum potassium values (≥ 5.7 mEq/l) was observed in approximately 1% of hypertensive patients in clinical trials. Serum potassium values ≥ 6.5 mEq/l has been observed in <0.1% of patients. A decrease in serum potassium may occur with enalapril.

Hypokalemia: Patients on Diuretics: The possibility of hypokalemia with enalapril may be minimized by either discontinuing the diuretic or increasing the salt intake prior to initiation of treatment with enalapril. It is necessary to continue the diuretic, provide the patient with instructions to take the first dose of VASOTEC after dosing times. In some patients treated with VASOTEC, commonly some reduction in blood pressure. However, in patients with severe hypotension or at risk for excessive hypotension, sometimes associated with oliguria and/or progressive azotemia and rarely with acute renal failure and/or death, renal function should be monitored during the first few weeks of therapy.

Surgical patients with hypertension or heart failure have an increased risk of postoperative hypotension. This risk may be low in patients with preserved renal function. Dosage reduction/increments and/or discontinuation of the diuretic and/or VASOTEC may be required.

Evaluation of Patients with Heart Failure or heart failure should always include assessment of renal function. (See DOSE AND ADMINISTRATION.)

Hypertension: Elevated serum potassium values (≥ 5.7 mEq/l) was observed in approximately 1% of hypertensive patients in clinical trials. Serum potassium values ≥ 6.5 mEq/l has been observed in <0.1% of patients. A decrease in serum potassium may occur with enalapril.

Hypokalemia: Patients on Diuretics: The possibility of hypokalemia with enalapril may be minimized by either discontinuing the diuretic or increasing the salt intake prior to initiation of treatment with enalapril. It is necessary to continue the diuretic, provide the patient with instructions to take the first dose of VASOTEC after dosing times. In some patients treated with VASOTEC, commonly some reduction in blood pressure. However, in patients with severe hypotension or at risk for excessive hypotension, sometimes associated with oliguria and/or progressive azotemia and rarely with acute renal failure and/or death, renal function should be monitored during the first few weeks of therapy.

Surgical patients with hypertension or heart failure have an increased risk of postoperative hypotension. This risk may be low in patients with preserved renal function. Dosage reduction/increments and/or discontinuation of the diuretic and/or VASOTEC may be required.

Evaluation of Patients with Heart Failure or heart failure should always include assessment of renal function. (See DOSE AND ADMINISTRATION.)

Hypertension: Elevated serum potassium values (≥ 5.7 mEq/l) was observed in approximately 1% of hypertensive patients in clinical trials. Serum potassium values ≥ 6.5 mEq/l has been observed in <0.1% of patients. A decrease in serum potassium may occur with enalapril.

Hypokalemia: Patients on Diuretics: The possibility of hypokalemia with enalapril may be minimized by either discontinuing the diuretic or increasing the salt intake prior to initiation of treatment with enalapril. It is necessary to continue the diuretic, provide the patient with instructions to take the first dose of VASOTEC after dosing times. In some patients treated with VASOTEC, commonly some reduction in blood pressure. However, in patients with severe hypotension or at risk for excessive hypotension, sometimes associated with oliguria and/or progressive azotemia and rarely with acute renal failure and/or death, renal function should be monitored during the first few weeks of therapy.

Surgical patients with hypertension or heart failure have an increased risk of postoperative hypotension. This risk may be low in patients with preserved renal function. Dosage reduction/increments and/or discontinuation of the diuretic and/or VASOTEC may be required.

Evaluation of Patients with Heart Failure or heart failure should always include assessment of renal function. (See DOSE AND ADMINISTRATION.)

Hypertension: Elevated serum potassium values (≥ 5.7 mEq/l) was observed in approximately 1% of hypertensive patients in clinical trials. Serum potassium values ≥ 6.5 mEq/l has been observed in <0.1% of patients. A decrease in serum potassium may occur with enalapril.

Hypokalemia: Patients on Diuretics: The possibility of hypokalemia with enalapril may be minimized by either discontinuing the diuretic or increasing the salt intake prior to initiation of treatment with enalapril. It is necessary to continue the diuretic, provide the patient with instructions to take the first dose of VASOTEC after dosing times. In some patients treated with VASOTEC, commonly some reduction in blood pressure. However, in patients with severe hypotension or at risk for excessive hypotension, sometimes associated with oliguria and/or progressive azotemia and rarely with acute renal failure and/or death, renal function should be monitored during the first few weeks of therapy.

Surgical patients with hypertension or heart failure have an increased risk of postoperative hypotension. This risk may be low in patients with preserved renal function. Dosage reduction/increments and/or discontinuation of the diuretic and/or VASOTEC may be required.

Evaluation of Patients with Heart Failure or heart failure should always include assessment of renal function. (See DOSE AND ADMINISTRATION.)

Hypertension: Elevated serum potassium values (≥ 5.7 mEq/l) was observed in approximately 1% of hypertensive patients in clinical trials. Serum potassium values ≥ 6.5 mEq/l has been observed in <0.1% of patients. A decrease in serum potassium may occur with enalapril.

Hypokalemia: Patients on Diuretics: The possibility of hypokalemia with enalapril may be minimized by either discontinuing the diuretic or increasing the salt intake prior to initiation of treatment with enalapril. It is necessary to continue the diuretic, provide the patient with instructions to take the first dose of VASOTEC after dosing times. In some patients treated with VASOTEC, commonly some reduction in blood pressure. However, in patients with severe hypotension or at risk for excessive hypotension, sometimes associated with oliguria and/or progressive azotemia and rarely with acute renal failure and/or death, renal function should be monitored during the first few weeks of therapy.
Baroreceptor influences on oxytocin and vasopressin secretion.
M Morris and N Alexander

Hypertension. 1989;13:110-114
doi: 10.1161/01.HYP.13.2.110

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1989 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/13/2/110

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in
Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/