Enhanced Release of Atrial Natriuretic Factor by Endothelin in Atria From Hypertensive Rats

Raymond J. Winquist, Ann L. Scott, and George P. Vlasuk

Intravenous (bolus) administration of endothelin results in a transient fall in blood pressure that is accentuated in spontaneously hypertensive rats (SHR) compared with Wistar-Kyoto normotensive rats (WKY). In attempting to discern possible mechanisms underlying this depressor response, we examined the ability of endothelin to release atrial natriuretic factor (ANF) from isolated, spontaneously contracting atria from SHR and WKY. Isolated right atria were suspended under 3.0 g of resting force in tissue baths with the amount of immunoreactive ANF (irANF) released after exposure to endothelin assessed by radioimmunoassay. Endothelin (10^{-8} and 10^{-7} M) caused a concentration-dependent increase (1.5-4.5-fold) in the release of irANF, which was significantly greater in atria of SHR compared with WKY. The greater release of irANF in atria of SHR versus WKY was not related to tissue weight or changes in contractile rate or force induced by endothelin. Therefore, endothelin appears to cause a direct release of irANF from rat right atria in vitro. As found for the depressor response in vivo, endothelin is more efficacious in the hypertensive compared with the normotensive atrial preparation. Release of ANF may be important in the hypotensive response to endothelin in vivo. (Hypertension 1989;14:111-114)
tured by a Buxco Data Logger and Contractility Monitor (Buxco, Sharon, Connecticut). Atria were allowed to equilibrate under 3.0 g of resting force for 1 hour. This level of resting force, under these same experimental conditions, was found previously to be near-optimal for release of ANF from rat atria and to lack any nonspecific, deleterious effect on atrial tissue integrity.

After the equilibration period, atria were washed and then incubated in 10 ml fresh PSS. At 10-minute intervals, 1 ml aliquots of the PSS were removed (with buffer replacement after each removal) for radioimmunoassay processing (see below). The first 10-minute period was designated as a control period (i.e., basal release) with tissues being incubated with increasing concentrations of endothelin (10^{-8} and 10^{-7} M) or vehicle (saline). After the final aliquot was removed, atria were recovered and dried at 50°C for 48 hours after being weighed.

For analysis of ANF levels by radioimmunoassay, aliquots were immediately heated at 95°C for 3 minutes followed by drying in vacuo. The dried samples were brought up directly in 1 ml radioimmunoassay buffer (supplied with the Peninsula Labs., Inc, kit, Belmont, California) and assayed for immunoreactive ANF (iANF) with the kit for rat ANF. The IC_{50} for rat ANF with this assay was 18 pg/tube.

The data generated in this study were analyzed by the Newman-Keuls multiple comparison test, or the Student's t test for unpaired samples where indicated, with p<0.05 taken as the level for statistical significance. Values are represented as mean±SEM. Endothelin was purchased commercially from Peninsula Labs., Inc. and, in rabbit aortic segments, was found to elicit contractile responses of similar potency to those reported in the literature.

Results

Administration of endothelin caused a concentration-related increase in the release of iANF from isolated atria of both SHR and WKY (Figure 1). In atria of SHR, the release of iANF was statistically significant, compared with vehicle addition, at both concentrations of endothelin (i.e., 10^{-8} and 10^{-7} M). In atria of WKY, only the higher concentration (i.e., 10^{-7} M) of endothelin caused a statistically significant release of iANF. At both concentrations of endothelin, there was a statistically significant greater release of iANF in SHR versus WKY.

These concentrations of endothelin had no effect on contractile rate in atria of WKY as shown in Figure 2, left. In atria of SHR, endothelin (10^{-8} M) caused a modest (16%) increase in rate, which failed to change further in the presence of the high concentration of endothelin. The baseline rate was 244±6 beats/min for atria of SHR and 283±13 beats/min for atria of WKY.

Discussion

Intravenous endothelin elicits an initial depressor response that is prominent in SHR. The depressor response is most likely due to an indirect effect of endothelin because this peptide has direct contractile effects on isolated cardiac and vascular smooth muscle. The observation that endothelin can release ANF from isolated rat cardiac myocytes raised the possibility that the depressor response may be mediated indirectly, in part, by the actions of ANF. We have found that endothelin is a potent secretagogue for ANF in isolated atria from SHR and WKY; thus, the initial observation of Fukuda et al. of ANF release in SHR is likely to be ANF only when the response is due to an indirect effect of endothelin.
which corroborates the recent study in guinea pig atria.9 Increases in the force of atrial contraction would be expected to evoke release of ANF from cardiac atria.8 However, in our study, the ability to release ANF was not related to the isotropic effects of endothelin. Increasing the concentration of endothelin (from 10^{-8} to 10^{-7} M) caused a marked increase in irANF but failed to cause any further change in contractile force in atria of SHR. It is unlikely that an initial increase in contractile force (as elicited by 10^{-8} M endothelin in SHR) would result in a delayed, further increase in the release of ANF because holding the force constant (i.e., maintaining the concentration of endothelin) for an additional 10-minute collection period did not lead to an increased release of irANF (data not shown). In addition, comparable increases in force were elicited by endothelin (10^{-8} M) in atria of SHR and WKY with only the tissue of SHR releasing significant levels of irANF. Endothelin had no effect on contractile force, which is also an effector for ANF release from atria,8 in atria of either SHR or WKY (Figure 2, left). Therefore, the release of ANF by endothelin is not strictly (positively) correlated with any action on contractile force or force. The endothelin-elicited release of ANF did not appear to be a consequence of damaged myocardial tissue because atrial rates were similar to those reported for rat right atria12 and diastolic levels of force remained stable.

Our results, therefore, demonstrate that endothelin is a more potent secretagogue for ANF in isolated atria of SHR versus WKY. Release of ANF may be important for the prominent depressor response to endothelin in the hypertensive rats.

Acknowledgment

The authors are especially appreciative of the secretarial efforts of Carole Hanann.

References

6. Wright CE, Fozard JR: Regional vasodilation is a prominent feature of the haemodynamic response to endothelin in

KEY WORDS • atrial natriuretic factor • vasodilation • vasoactive compounds • hypotension • spontaneously hypertensive rats • Wistar-Kyoto rats
Enhanced release of atrial natriuretic factor by endothelin in atria from hypertensive rats.
R J Winquist, A L Scott and G P Vlasuk

Hypertension. 1989;14:111-114
doi: 10.1161/01.HYP.14.1.111

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1989 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/14/1/111

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in
Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/