Editorial Comment

The Endothelium
Target and Promoter of Hypertension?

Thomas F. Lüscher

In spite of its strategic anatomic position between the circulating blood and vascular smooth muscle cells, the endothelium until recently has not attracted much attention. Moncada et al were the first to demonstrate that endothelial cells are a rich source of prostacyclin. Furchgott and Zawadzki later showed that endothelial cells release a potent relaxing factor when stimulated with acetylcholine. The control of vascular function by the endothelium, however, proved to be much more complex than anticipated as the cells not only release different vasodilator substances but also mediate contraction of the underlying vascular smooth muscle. Indeed, shortly after the discovery of endothelium-derived relaxing factor, it became evident that the endothelium facilitates contractions to hypoxia in canine blood vessels. Sandwich experiments convincingly demonstrated this response to be mediated by a diffusible endothelium-derived substance (EDCF1) (Figure 1). Other physical stimuli such as quick stretch and pressure also evoke endothelium-dependent contractions, at least in certain blood vessels. In addition, endothelium-dependent contractions are elicited by arachidonic acid and thrombin in canine veins and by arachidonic acid, acetylcholine, nicotine, and norepinephrine in cerebral arteries of the dog.

Subsequent to the description of endothelium-dependent contractions, research interest focused on the nature of the endothelium-derived contracting factors. It soon became clear that different mediators must be involved. Indeed, in the canine coronary artery endothelium-dependent contractions to hypoxia proved to be resistant to all pharmacological interventions except calcium antagonists. In contrast, endothelium-dependent contractions to arachidonic acid in canine veins could be prevented by inhibitors of cyclooxygenase. This latter observation suggested that one of the endothelium-derived contracting factors (EDCF2) represents a cyclooxygenase product. Thromboxane A2 was the most obvious candidate as it possesses vasoconstrictor properties.

Indeed, in cerebral blood vessels of the dog, the endothelium-dependent contractions evoked by arachidonic acid are associated with an increased formation of thromboxane A2. Both events can be reduced or prevented by endothelium removal and by inhibitors of cyclooxygenase or thromboxane synthetase. However, in canine veins endothelium-dependent contractions to arachidonic acid are resistant to inhibitors or thromboxane synthetase suggesting that an arachidonic acid metabolite other than thromboxane A2 is involved. Thus, at least two contracting substances must be formed during activation of the cyclooxygenase pathway in endothelial cells.

Activation of the cyclooxygenase pathway facilitates not only the formation of prostaglandins but also that of oxygen-derived free radicals. Endothelial cells in culture produce superoxide anions under certain conditions, and the radicals evoke contraction of isolated blood vessels such as the canine basilar artery and the rat aorta. In the canine basilar artery, endothelium-dependent contractions to the calcium ionophore A23187 can be prevented by both indomethacin and superoxide dismutase, a scavenger of oxygen-derived free radicals. Prostaglandin H2 synthetase possesses hydroperoxidase activity, which results in the production of superoxide anions. Hence, superoxide is likely to be the endothelium-derived contracting factor formed after activation of the cyclooxygenase pathway in the canine cerebral circulation.

To complicate things further, Hickey et al reported that media of endothelial cells in culture contain a potent vasoconstrictor peptide. Yanagisawa et al subsequently identified this substance as the 21-amino acid peptide endothelin. In cultured endothelial cells, thrombin, adrenaline, transforming growth factor β, arginine vasopressin, interleukin 1, and the calcium ionophore induce the expression of preproendothelin messenger RNA. Thrombin has been shown to elicit the release of endothelin from endothelial cells in culture and from the intact porcine aorta. Endothelin can be excluded because the mediator of the endothelium-dependent contractions requiring the activity of cyclooxygenase as indomethacin does not reduce its effects. Although ischemia causes externalization of endothelin-1 binding sites in rat cardiac membranes, it is unlikely that the peptide is responsible for the endothelium-
dependent contractions occurring during hypoxia as the response is faster in its time course and resistant to the inhibitor of protein synthesis cycloheximide.22 Thus, it is apparent that the endothelium can release at least five different endothelium-derived contracting factors and possibly also angiotensin II (Figure 1).23-24

The endothelium is the most obvious target of high blood pressure. Endothelial cells sense physical forces such as blood flow and align the long axis of their cell body and nuclei along its direction. In hypertension, striking morphological changes of the intimal layer occur.23 Physical forces such as shear stress, stretch, and pressure elicit functional changes of endothelial cells. Thus, it is not surprising that endothelium-dependent relaxations to acetylcholine are reduced in hypertensive arteries.25 More surprising was the fact that indomethacin normalized the reduced endothelium-dependent relaxations in the aorta of the spontaneously hypertensive rat.25 These results suggested that the primary defect in this form of hypertension does not involve a decreased release of endothelium-dependent relaxing factor but rather the concomitant release of cyclooxygenase-dependent contracting factors. As in canine veins, the endothelium-dependent contractions can be prevented by inhibitors of cyclooxygenase but not those of thromboxane or prostacyclin synthetase, which suggests that a prostanoid other than thromboxane \textit{A}_2 or prostacyclin mediates the response.25 This conclusion was further strengthened by the observation that, in the perfused aorta of the spontaneously hypertensive rat, very little thromboxane \textit{A}_2 is released and its production remains unaffected by acetylcholine.26 More recently, superoxide anions have been excluded as superoxide dismutase did not prevent the response.14 In this issue of \textit{Hypertension}, Kato et al27 provide evidence that prostaglandin H\textsubscript{2} may be the endothelium-derived contracting factor released by acetylcholine in the aorta of the spontaneously hypertensive rat (Figure 1). Indeed, exogenous prostaglandin H\textsubscript{2} evokes contractions of the rat aorta at much lower concentrations than do prostaglandin E\textsubscript{2} and D\textsubscript{2}. Thus, the amounts of the latter prostanoids released appear insufficient to explain the response. The fact that the contractions to exogenous prostaglandin H\textsubscript{2} can be prevented by thromboxane receptor antagonists, but not by inhibitors of the synthesis of the prostanoid is in accord with similar effects of the drugs on endothelium-dependent contractions to acetylcholine.27,28 Unresolved questions are whether the hypertensive endothelium releases more prostaglandin H\textsubscript{2} or whether the smooth muscle cells are more sensitive to the vasoconstrictor effects of this prostanoid.25

Hypertension is not the only condition that is associated with an increased occurrence of endothelium-dependent contractions. Aging also promotes endothelium-dependent contractions. In old Wistar-Kyoto rats, the response becomes as prominent as that in adult spontaneously hypertensive rats.29 Similarly, the circulating levels of endothelin increase.
with age. Thus, the occurrence of pronounced endothelium-dependent contractions may reflect the premature aging of the hypertensive blood vessel wall.

What is the importance of endothelium-dependent contractions in hypertension? An imbalance of endothelium-dependent relaxations and contractions in hypertensive blood vessels may contribute to the increased peripheral vascular resistance or to cardiovascular complications. With respect to the latter, it is of interest that the endothelium-derived contracting factor also appears to be released by aggregating platelets in the aorta31 and in response to serotonin in the aorta and in isolated hearts as well as in response to both serotonin and adenosine diphosphate (both platelet-derived products) in the cerebral circulation of the spontaneously hypertensive rat. Indomethacin normalizes endothelium-dependent relaxations to acetylcholine in mesenteric resistance arteries of the rat, which suggests that these functional changes of the endothelium also occur in blood vessels where peripheral vascular resistance is regulated. Unfortunately, in contrast to platelet-derived mediators, the role of acetylcholine as an agonist for the release of endothelium-derived contracting factor remains elusive. Indeed, acetylcholine is not a circulating hormone capable of activating the endothelium from the intraluminal side. Acetylcholine released from cholinergic nerves, however, may reach the endothelium in resistance vessels but not in larger arteries. Hence, it will be of crucial importance to further delineate the release mechanisms for endothelium-derived contracting factors in normotensive and hypertensive arteries in vitro and in vivo.

Thus, we are faced with the fact that the endothelium, even with its structural inconspicuity within the blood vessel wall, can profoundly affect cardiovascular function. Under physiological conditions it appears to play a protective role in the circulation by the release of substances inhibiting contraction and platelet activation. As we grow older, become hypertensive, hyperlipidemic, and eventually develop platelet activation. As we grow older, become hyper-

References

24. Dzau VJ: Significance of the vascular renin-angiotensin pathway. Hypertension 1986;8:553-559

Key Words • endothelium • prostaglandin synthase • acetylcholine

(Hypertension 1990;15:482–485)
The endothelium. Target and promoter of hypertension?

T F Lüscher

Hypertension. 1990;15:482-485
doi: 10.1161/01.HYP.15.5.482

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1990 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/15/5/482.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Hypertension_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Hypertension_ is online at:
http://hyper.ahajournals.org//subscriptions/