Rat Brain Natriuretic Peptide
Isolation From Rat Heart and Tissue Distribution

Kazuwa Nakao, Hiroshi Itoh, Yoshikazu Kambayashi, Kiminori Hosoda, Yoshihiko Saito,
Takayuki Yamada, Masashi Mukoyama, Hiroshi Arai, Gotaro Shirakami, Shin-ichi Suga,
Michihisa Jougasaki, Yoshihiro Ogawa, Ken Inouye, and Hiroo Imura

We have isolated a cardiac natriuretic peptide of 5,000 d from atrial tissues from 500 rats and
determined its amino acid sequence. The 5,000 d atrial natriuretic factor was elucidated to be
a 45 amino acid peptide with the sequence of S-Q-D-S-A-F-R-I-Q-E-R-L-R-N-S-K-M-A-H-
S-S-C-F-G-Q-K-I-D-R-I-G-A-V-S-R-L-G-C-D-G-L-R-L-F by sequencing the native peptide
and its lysyl endopeptidase digests. The sequence of this peptide was identical to the amino acid
sequence (51–95) of the rat brain natriuretic peptide precursor deduced from the complemen-
tary DNA (cDNA) sequence. The cardiac natriuretic peptide with a molecular weight of 5,000,
or rat brain natriuretic peptide, was identified as the major storage form and as the sole
secretory form derived from the brain natriuretic peptide precursor in the rat heart. The rat
brain natriuretic peptide level in the atrium was 3.68±0.61 μg/g, which represents about 4% of
that of atrial natriuretic factor. Rat brain natriuretic peptide was also detected in the ventricle.
The ratio of brain natriuretic peptide to atrial natriuretic peptide in the ventricle was
approximately 30% and much higher than that in the atrium. Rat brain natriuretic peptide,
however, was not detectable in the brain. We conclude that the 5,000 d cardiac natriuretic
peptide is rat brain natriuretic peptide with 45 amino acids derived from the brain natriuretic
peptide precursor and is secreted from the rat heart as a novel cardiac hormone. (Hypertension
1990;15:774–778)

By using radioimmunoassay (RIA) for the ring
structure of isoatrial natriuretic peptide (iso-
ANP), which is the highly conserved
sequence of natriuretic peptides, and radioreceptor
assay for atrial natriuretic peptides (ANP), we have
already demonstrated the presence of a considerable
amount of a novel cardiac natriuretic peptide with a
molecular weight of 5,000 in the rat atrium, which is
distinct from iso-ANP and rat atrial natriuretic
factor-(99–126) [rat ANP-(99–126)] isolated
previously.1 We have also shown that the 5K cardiac
natriuretic peptide (molecular weight 5,000) is
released from the heart in the Langendorff perfusion
experiment.1 We could not, however, detect signifi-
cant amounts of the cardiac natriuretic peptide in
other rat tissues including the brain.1 Thus, the
biosynthesis and distribution of the 5,000 cardiac
natriuretic peptide present a remarkable contrast to
those of mammalian ANP and porcine brain natri-
uretic peptide (BNP) elucidated so far.2–12 Both
ANP and porcine BNP are stored as precursor forms
in the heart2–5,11,12 and are secreted into the circula-
tion from the heart as cleaved forms with a molecular
weight of about 3,000.4,12 They also distribute at
significant levels as low molecular forms in the
brain.6–10

In the present study, we have isolated the 5,000
cardiac natriuretic peptide from the rat atrium and
determined the amino acid sequence. We have also
clarified the distribution of this natriuretic peptide.

Methods

Peptides

Synthetic iso-ANP and rat ANP-(99–126) were pur-
chased from Peninsula Labs. Inc. (Belmont, Califor-
nia). The sequence of iso-ANP is S-Q-D-S-A-
K-I-D-R-I-G-A-V-S-R-L-G-C-D-I-L-L-I-A-Q. After the sequencing of 5,000 cardiac natriuretic peptide, the peptide was synthesized by the solid-phase method.

Radioimmunoassay

Detection of the cardiac natriuretic peptide was performed by RIA for the ring structure of iso-ANP as we previously reported. The ANP level was measured by RIA that recognizes the C-terminal sequence of immunoreactive ANP-(99-126).3

Preparation of Immunoaffinity Matrix

Antisera against iso-ANP-(23-46) were prepared in Japanese White rabbits as we previously described. One of the antisera obtained (KY-RG) showed a specificity similar to the mouse antiserum (I-10). The RIA with KY-RG recognized the ring structure of iso-ANP. The cross-reactivity with rat ANP-(99-126) was less than 0.01%. Three milliliters antiserum, KY-RG, was used for preparation of immunoglobulins by ammonium sulfate precipitation. The immunoglobulins were used for conjugation to cyanogen bromide-activated Sepharose 4B (3.9 g, Pharmacia, Uppsala, Sweden).3

Isolation of Cardiac Natriuretic Peptide From Rat Atrium

Atrial tissues (65 g) obtained from 500 Wistar rats were boiled in 0.1 M acetic acid (650 ml) for 5 minutes. The boiled tissues were then homogenized in 1 M acetic acid (600 ml) for 10 minutes with a Polytron homogenizer (Kinematika, Switzerland). The supernatant obtained by centrifugation (20,000g, 30 minutes) was loaded on a SP-Sephadex C-25 column (25 mm i.d.×70 mm, Pharmacia) and eluted successively with 1 M sodium phosphate, 2 M pyridine, and 2 M pyridine acetate according to the method reported elsewhere.9 The pyridine acetate solution was then treated with cyanogen bromide-activated Sepharose 4B (3.9 g, Pharmacia, Uppsala, Sweden).3

Sequence Analysis

Amino acid sequence analysis was performed by stepwise Edman degradation with a gas-phase sequencer equipped with a reverse-phase HPLC system (model 470A/120A, Applied Biosystems Inc., Foster, California).13

Reductive Carboxymethylation and Lysyl Endopeptidase Digestion

The isolated cardiac natriuretic peptide (700 ng) was reduced with 20 mM dithiothreitol in 0.5 M Tris-HCl (pH 8.5) at 37°C for 4 hours and then treated with 50 mM sodium monooiodoacetate for 5 minutes at 23°C. The reaction mixture was applied on a μ-Bondasphere C18 column (3.9 mm i.d.×150 mm, Waters) and eluted with a linear gradient of acetonitrile of 10-60% in 0.1% TFA. The carboxymethylated peptide was then digested with lysyl endopeptidase (200 ng, Wako Pure Chemicals Industries, Ltd., Osaka, Japan) in 50 mM Tris-HCl (pH 8.5) at 37°C for 2 hours. The digests thus obtained were subjected to reverse-phase HPLC on a μ-Bondasphere C18 column (3.9 mm i.d.×150 mm) with a linear gradient of acetonitrile of 0-60% in 0.1% TFA.

Analysis of Peptide in Perfusate From Isolated Hearts

The perfusion of isolated beating rat hearts was performed as we described elsewhere.14 The perfusate (1 liter) was treated with a Sep-Pak C18 cartridge before application to reverse-phase HPLC on a Nucleosil 5C18 column under the isocratical condition with 0.1% TFA–28% acetonitrile.

Tissues and Extraction Procedure

Hearts, brains, and other tissues were obtained from male Slc: Wistar rats weighing 250-350 g (Shizuoka Animal Center, Shizuoka, Japan) immediately after decapitation. The apical half of the ventricular tissue was obtained for prevention of atrial contamination. Brains were dissected as previously reported.5,15 Tissues were extracted as previously described in detail.3

Results

Isolation of Novel Cardiac Natriuretic Peptide

The total amount of cardiac natriuretic peptide in 1 M acetic acid extract from rat atrial tissues (65 g) determined by RIA for iso-ANP-(23-46) was 18 μg. In the reverse-phase HPLC profile of the 1 M acetic acid fraction (SP-Sephadex C-25) of the 1 M acetic acid extract on a Nucleosil 5C18 column, the 5,000 cardiac natriuretic peptide was the major component of the iso-ANP-(23-46)-like immunoreactivity at the retention time of iso-ANP. There was no peak of immunoreactivity at the retention time of iso-ANP. In the reverse-phase HPLC profile of the materials adsorbed on the immunoadfinity matrix on a Nucleosil 5C18 column, the 5,000 cardiac natriuretic peptide was eluted at the retention time of 17 minutes. The peptide was further purified to complete homogeneity by the subsequent reverse-phase HPLC on a diphenyl column as depicted in Figure 1. There was a minor peak preceding the major peak. This minor
peak proved to be the peptide with the same sequence of which methionine residue is oxidized. Finally, we obtained 1.6 μg of the 5,000 cardiac natriuretic peptide.

Amino Acid Sequence of Cardiac Natriuretic Peptide

Sequence analysis of the 5,000 cardiac natriuretic peptide (about 300 ng) determined the structure of the N-terminal 37 amino acid residues. As shown in Figure 2, the enzymatic digestion of the native peptide with lysyl endopeptidase yielded four peaks. Among them, three peaks designated L1, L2, and L3 proved to come from the parent peptide. Another peak was not caused by peptide fragmentation. Their detailed sequences are given in Figure 3. The 5,000 cardiac natriuretic peptide was clarified to be a 45 amino acid peptide with the sequence shown in Figure 3. The synthetic 5,000 cardiac natriuretic peptide was confirmed to be identical to the native peptide both in analytical HPLC and in peptide mapping with lysyl endopeptidase (data not shown).

Identification of Secretory Form

In reverse-phase HPLC analysis of the perfusate from isolated rat hearts, two peaks of immunoreactivity were detected in the perfusate. The major peak was comigrated with the native 5,000 cardiac natriuretic peptide or rat BNP. The minor peak corresponded to the peptide with the methionine residue oxidized. The level of rat BNP in the perfusate under nonstimulated conditions was shown together with that of ANP in Table 1.

Tissue Distribution

The rat BNP level in the atrium was 3.68±0.61 μg/g, which represents about 4% of that of ANP.
was higher than in the atrium. In contrast to the
clear. The ratio of BNP to ANP in the ventricle (30%)
amounts of rat BNP in discrete rat brain regions
although we could detect ANP in the same samples
(23–39), which was thought to be essential for bi-
logical actions of a family of natriuretic peptides.

Discussion

In the present study, we have isolated the 5,000
cardiac natriuretic peptide, which we previously
identified in the rat heart, and determined its amino
acid sequence. We have also elucidated that the
5,000 cardiac natriuretic peptide was secreted from the
heart, however, we could not detect significant
rat BNP in the subman-
no appreciable amounts of rat BNP in the subman-
(Table 1). Rat BNP was also detected in the ventri-
cle. The ratio of BNP to ANP in the ventricle (30%)
was higher than in the atrium. In contrast to the
heart, however, we could not detect significant
rat BNP in the subman-
no appreciable amounts of rat BNP in the subman-
(Table 1). Rat BNP was also detected in the ventri-
cle. The ratio of BNP to ANP in the ventricle (30%)
was higher than in the atrium. In contrast to the
heart, however, we could not detect significant
rat BNP in the subman-
no appreciable amounts of rat BNP in the subman-
(Table 1). Rat BNP was also detected in the ventri-
cle. The ratio of BNP to ANP in the ventricle (30%)
was higher than in the atrium. In contrast to the
heart, however, we could not detect significant
rat BNP in the subman-

Table 1. Concentrations of Brain Natriuretic Peptide (5,000 Cardiac Natriuretic Peptide) and Atrial Natriuretic Peptide in Rats

<table>
<thead>
<tr>
<th>Tissue</th>
<th>BNP</th>
<th>ANP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart (n=3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrium</td>
<td>3.68±0.61 µg/g</td>
<td>56.67±16.9 µg/g</td>
</tr>
<tr>
<td>Ventricle</td>
<td>0.0109±0.0021 µg/g</td>
<td>0.0234±0.008 µg/g</td>
</tr>
<tr>
<td>Perfusate</td>
<td>0.061±0.009 ng/min</td>
<td>1.92±0.38 ng/min</td>
</tr>
<tr>
<td>Brain (n=5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olfactory bulb</td>
<td><0.5 ng/g</td>
<td>4.12±0.13 ng/g</td>
</tr>
<tr>
<td>Cerebral cortex</td>
<td><0.05</td>
<td>3.51±0.24</td>
</tr>
<tr>
<td>Hippocampus</td>
<td><0.05</td>
<td>1.27±0.19</td>
</tr>
<tr>
<td>Striatum</td>
<td><0.05</td>
<td>1.26±0.13</td>
</tr>
<tr>
<td>Thalamus</td>
<td><0.05</td>
<td>4.91±0.24</td>
</tr>
<tr>
<td>Hypothalamus</td>
<td><0.05</td>
<td>7.34±0.71</td>
</tr>
<tr>
<td>Septum</td>
<td><0.05</td>
<td>11.45±1.95</td>
</tr>
<tr>
<td>Midbrain</td>
<td><0.05</td>
<td>4.08±0.12</td>
</tr>
<tr>
<td>Pons</td>
<td><0.05</td>
<td>1.16±0.08</td>
</tr>
<tr>
<td>Medulla oblongata</td>
<td><0.05</td>
<td>1.37±0.02</td>
</tr>
<tr>
<td>Cerebellum</td>
<td><0.05</td>
<td>0.24±0.01</td>
</tr>
</tbody>
</table>

Values are the mean±SEM. BNP, brain natriuretic peptide; ANP, atrial natriuretic peptide.
Because BNP is originally isolated from the porcine brain as 26 and 32 amino acid peptides,8,9 BNP is expected to play a role or roles in the central regulation of body fluid and blood pressure alone or in concert with brain ANP.8–10 No significant amount of BNP, however, was detected in the rat brain in the present study, although our RIA against the ring structure of rat BNP could detect N-terminally and C-terminally modified (elongated or deleted) forms of rat BNP. Additionally, no BNP messenger RNA was detected in the rat brain. Recently, bovine BNP or aldosterone secretion inhibitory factor was isolated from chromaffin cells as a 35 amino acid peptide.21 More recently, we have isolated and sequenced human BNP with 32 amino acids in the human heart.22 These results indicate that the physiological and pathophysiological significance of the dual mechanism of ANP and BNP, especially BNP, must await further investigation based on these findings.

Acknowledgments

We thank Hiroko Kato, Atsuko Furu, and Ikuyo Yoshida for their secretarial and technical assistance.

References

KEY WORDS • radioimmunoassay • atrial natriuretic peptide • rat studies
Rat brain natriuretic peptide. Isolation from rat heart and tissue distribution.
K Nakao, H Itoh, Y Kambayashi, K Hosoda, Y Saito, T Yamada, M Mukoyama, H Arai, G Shirakami and S Suga

Hypertension. 1990;15:774-778
doi: 10.1161/01.HYP.15.6.774

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1990 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/15/6_Pt_2/774

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/