Regression of Cardiac Hypertrophy in Spontaneously Hypertensive Rats by Enalapril and the Expression of Contractile Proteins

Timothy J. Childs, Michael A. Adams, and Alan S. Mak

Several experimental models involving the development of cardiac hypertrophy in adult rats are characterized by the reexpression of the fetal isoform of myosin heavy chain (V3). To determine whether a similar adult-to-fetal shift in the expression of the thin-filament proteins occurs during cardiac hypertrophy, we have examined the expression of the isoforms of myosin, tropomyosin, and troponin T in the left ventricle of young spontaneously hypertensive rats (SHR) with and without treatment using enalapril, an angiotensin converting enzyme inhibitor. Phosphorylation of tropomyosin, which is predominant in the fetal state, was also analyzed. Twelve-week-old SHR were treated with enalapril for 2, 5, 8, and 9 weeks followed by withdrawal of treatment for 9 weeks. Control SHR, without drug treatment, were weight- and age-matched. After 9 weeks of enalapril treatment, mean arterial blood pressure was reduced (from 166±11 to 89±5 mm Hg), and left ventricular weight/body weight ratio was regressed (from 2.53±0.14 to 1.96±0.05 g/kg) to normotensive levels. During the 9-week treatment period, the percent V3 decreased in SHR substantially from 35±3% to 13±1%. There was a significant correlation between the left ventricular hypertrophy and the percent V3 myosin expression in the SHR during regression (r=0.697, p<0.001). However, only the adult isoforms of tropomyosin and troponin T were detected in the SHR with or without enalapril treatment, and the level of tropomyosin phosphorylation remained constant irrespective of the degree of left ventricular hypertrophy. These results suggest that the adult-to-fetal switch in the expression program of myosin isoforms that accompanies the development of left ventricle hypertrophy is not adopted by the thin-filament proteins, tropomyosin and troponin T.

(Hypertension 1990;16:662-668)

Generally, left ventricular hypertrophy develops in response to a chronic pressure load in rats. Cardiac hypertrophy is a quantitative as well as a qualitative process; the former is reflected in the total nucleic acid and protein synthesis and the latter in the selective synthesis of different protein isoforms. Myosin has been studied widely in the hypertrophied heart. There are two isoforms of myosin heavy chains, α and β, in the left ventricle coded by different genes. Under nondenaturing conditions, myosin exists as either homodimers, V1 (αα) and V3 (ββ), or heterodimers, V2 (αβ), which are separable on nondenaturing polyacrylamide gels. In the adult rat, the α form is preferentially expressed, whereas β is the major form in the fetal heart. In several models of rat cardiac hypertrophy (e.g., aortic coarctation, Goldblatt hypertension, and spontaneously hypertensive rats [SHR]), the β fetal myosin isoform is reexpressed at the expense of the α form.

The maximum shortening velocity of muscle in general correlates positively with the steady-state, actin-activated myosin adenosine triphosphatase (ATPase) activity. In rats, the maximum shortening velocity of cardiac muscle is markedly reduced in the hypertrophied heart, which expresses preferentially the V3 to V1 myosin isoform; this is consistent with in vitro observations that V3 has lower ATPase activity than V1. Thus, the adult-to-fetal switch in the expression of myosin isoforms in cardiac hypertrophy can account for, in part, the difference in contractility between the normal and hypertrophied hearts in rats. However, other factors may contribute to the altered contractile properties of the hypertrophied heart. Possible candidates are the thin-filament contractile proteins, tropomyosin, troponin, and actin. Unlike myosin, relatively little is known about these proteins in the hypertrophied heart.
Tropomyosin in mammalian striated muscle consists of two isoforms, α and β. In rat skeletal muscle, the β-isoform predominates in the fetal muscle, however, only the α-isoform, which is coded during development until about equal amounts of the two isoforms are expressed in the adult. In rat cardiac muscle, however, only the α-isoform, which is coded by the same gene as in the skeletal muscle, has been detected at the protein level in the fetal and adult heart. Recently, it has been reported that messenger RNA (mRNA) of β-tropomyosin is found in the left ventricle of rats during the early phase of hypertrophy development induced by aortic coarctation. If one considers β-tropomyosin to be a fetal isoform (i.e., skeletal muscle expression program), these data suggest that an adult-to-fetal switch in the expression program for tropomyosin occurs at least at the mRNA level; however, the relative amounts of the α- and β-tropomyosin mRNA and expression of the β-isoform at the protein level in the hypertrophied heart were not analyzed. The level of tropomyosin phosphorylation varies dramatically during development of the heart. In the fetal rat heart, the level of phosphorylation is about 70% but declines to less than 30% in the adult heart. Recently, it has been identified in the rat left ventricle. The mRNA level; however, the relative amounts of the expression program occurs at least at the mRNA level; however, the relative amounts of the α- and β-tropomyosin mRNA and expression of the β-isoform at the protein level in the hypertrophied heart were not analyzed. The level of tropomyosin phosphorylation varies dramatically during development of the heart. In the fetal rat heart, the level of phosphorylation is about 70% but declines to less than 30% in the adult heart. Two troponin T isoforms, 43 kDa and 41 kDa, have been identified in the rat left ventricle. The smaller isoform is present in trace amounts in the fetal heart but increases after birth with concomitant decrease of the larger form, which becomes undetectable in the adult heart. Different isoforms of troponin C and troponin I have also been identified in fetal and adult cardiac muscle in a variety of vertebrates.

The objectives of the present study are 1) to determine whether the observed adult-to-fetal switch in the expression of myosin isoforms during the development of cardiac hypertrophy in SHR also applies to the expression of thin-filament proteins, tropomyosin and troponin T; 2) to determine whether there are any increases in the level of phosphorylation of tropomyosin during the development of cardiac hypertrophy; and 3) to determine whether enalapril, an angiotensin converting enzyme inhibitor effective in lowering blood pressure and regressing ventricular mass in SHR, has any effect on the expression of the contractile protein isoforms. To our knowledge, this is the first report on the expression of myosin and thin-filament proteins during the development and regression of cardiac hypertrophy in SHR.

Methods

Animals and Experimental Design

Thirty 12-week-old SHR (Charles River Laboratories, Montreal, Canada) were treated with enalapril by inclusion of the drug in the water at a rate of 25 mg/kg/day. Concentrations were adjusted weekly to match the body weight/consumption ratio as described by Korner et al. Groups of rats were treated for 2, 5, 8, or 9 weeks with enalapril. A separate group of rats was treated with enalapril for 9 weeks followed by withdrawal of treatment for 9 weeks. Control untreated SHR were age- and weight-matched. Direct blood pressure was measured using implanted aortic catheters as described by Head and Adams. After death, the hearts were removed and blotted, and the left ventricles were excised and weighed. Left ventricular hypertrophy was expressed as the ratio left ventricular weight/body weight (g/kg). The left ventricles were frozen immediately in liquid N₂ and stored at −70° C until analyzed for myosin, tropomyosin, and troponin T.

Protein Extractions and Gel Electrophoresis

Myosin. The frozen tissue from the left ventricle was homogenized in 10% glycerol, 20 mM Na₃P₂O₄, pH 8.8, centrifuged, and the supernatant analyzed for the V₁, V₂, and V₃ heavy chain isoforms by electrophoretic separation in 4% nondenaturing pyrophosphate polyacrylamide gels at 2°C with a circulating bath as described by Hoh et al. A pH range of 4–6 with 4% ampholine was used. This gel system can separate the phosphorylated and non-phosphorylated α- and β-tropomyosin into four distinct spots.

Troponin. The left ventricular muscle was homogenized in 10 vol 9.5 M urea, 4% ampholyte (pH range 4–6), 5% β-mercaptoethanol, and 2% nonidet P40. The homogenate was subjected to two-dimensional isoelectric focusing/sodium dodecyl sulfate (SDS) gel electrophoresis as described by Heeley et al. A pH range of 4–6 with 4% ampholine was used. This gel system can separate the phosphorylated and non-phosphorylated α- and β-tropomyosin into four distinct spots.

The relative amount of the protein isoforms was analyzed by either a Laser densitometer (LKB, Sweden) for one-dimensional gels or by an image analyzer for two-dimensional gels after Coomassie blue staining. Results were expressed as the mean±SEM. Student's t test was used to compare two groups of data at each time point. Regression lines were calculated using the method of least squares. A value of p<0.05 was considered statistically significant.

Results

All of the following changes described are significant. In Figures 2–5, with the exception of the 12-week time point (two rats), all points represent measurements from at least four rats. In Figures 6A and 6B, each point represents one measurement (i.e., one rat).
Isoform Patterns of Myosin, Tropomyosin, and Troponin T

Figure 1 shows typical patterns of left ventricular myosin, tropomyosin, and troponin T isoforms from 1) 21-week-old SHR that have been treated with enalapril for the previous 9 weeks, 2) control untreated SHR, 3) a fetal normotensive rat, and 4) an adult normotensive rat. Panel A: Nondenaturing gel electrophoresis of myosin isoforms V1, V2, and V3. Panel B: Two-dimensional gel electrophoresis of tropomyosin. First dimension (horizontal), isoelectric focusing; second dimension (vertical), sodium dodecyl sulfate (SDS) gel; pα, phosphorylated tropomyosin; α, unphosphorylated tropomyosin. Panel C: Western blot of troponin T separated by SDS-gel electrophoresis into fetal (43 kD) and adult (41 kD) components.

Expression of Myosin, Tropomyosin, and Troponin T Isoforms and Level of Tropomyosin Phosphorylation

Percent myosin V3 increased with age for the untreated SHR, from 21 ±1% in the 12-week-old to 47 ±2% in the 30-week-old rats (Figure 4). Treatment of the SHR with enalapril for 9 weeks decreased the expression of V3 dramatically from 35 ±3% in untreated 21-week-old SHR to 13 ±1% in enalapril-treated SHR of the same age. After withdrawal of enalapril treatment for 9 weeks, the percent expression of V3 in the SHR was 30 ±2% in the enalapril-treated SHR compared with 47 ±2% in the untreated rats.

Correlation Between Left Ventricular Hypertrophy and Protein Expression

A strong correlation was found between the percent V3 and the degree of left ventricular hypertrophy for the SHR treated with enalapril (n=23,
Childs et al Regression of Cardiac Hypertrophy in SHR 665

Discussion

Reexpression of the fetal isoform (V₃) of myosin heavy chain at both mRNA and protein levels accompanying left ventricle hypertrophy is well documented using various rat models (e.g., aortic coarctation, renal artery stenosis, and in SHR). However, relatively little is known about the thin-filament contractile proteins in cardiac hypertrophy. Using the aortic coarctation rat model, two studies have shown that mRNA of fetal actin and tropomyosin isoforms are reexpressed during the early phase of induced hypertrophy (2–7 days after the operation), but the protein levels were not analyzed. It has also been shown that cardiac hypertrophy induced in rats by renal artery stenosis does not change the troponin T isoform expression profile. In the present study, we did not detect the fetal protein isoforms of tropomyosin (β) and troponin T (41 kDa) in hypertrophied rat left ventricles of SHR, although myosin V₃ was expressed at a much higher level in the untreated SHR than in the normotensive counterparts. These results indicate that, at least in the SHR model, the adult-to-fetal switch in the expression program of the fetal myosin isoform accompanying development of left ventricular hypertrophy is not adopted by the thin-filament pro-

Figure 2. Graph showing mean arterial pressure ±SEM in spontaneously hypertensive rats (SHR) at different ages, with enalapril treatment (○) and without enalapril treatment (●). Twelve-week-old SHR were treated with enalapril for 0 to 9 weeks. Treatment was withdrawn from a group of rats after 9 weeks, and they were observed for an additional 9 weeks.

Figure 3. Graph showing left ventricle weight/body weight ratio (L.V./B.W.) ±SEM in spontaneously hypertensive rats (SHR) at different ages, with enalapril treatment (○) and without enalapril treatment (●). Twelve-week-old SHR were treated with enalapril for 0 to 9 weeks. Treatment was withdrawn from a group of rats after 9 weeks, and they were observed for an additional 9 weeks.
proteins, tropomyosin and troponin T. It is likely that different expression programs for the thick- and thin-filament proteins also occur in other models of cardiac hypertrophy induced by pressure overload, as we have found that the pattern of left ventricular tropomyosin expression is not altered in adult rats subjected to aortic coarctation (T.J. Childs and A.S. Mak, unpublished results).

That the level of tropomyosin phosphorylation is much higher in the fetal heart than in the adult emphasizes the importance of this modification in the embryonic muscle.16 This posttranslational modification could represent a modulatory mechanism for the fine tuning of the contractile apparatus to the particular needs of the embryonic tissue. We have observed a relatively constant level of tropomyosin phosphorylation in the SHR irrespective of the degree of left ventricular hypertrophy. It suggests that the phosphorylation mechanism prevalent in the fetal heart is not reintroduced in the adult SHR during the development of cardiac hypertrophy.

There are a few studies that evaluate myosin isoform expression with respect to associated regression of cardiac hypertrophy in renovascular hypertensive and normotensive rats using angiotensin converting enzyme inhibitors.26–28 As far as we are aware, there are no reports on myosin and thin-filament protein isoforms during regression in the SHR treated with angiotensin converting enzyme inhibitors. As reported by others using renovascular hypertensive rats, we found that regression of blood pressure and left ventricular mass in SHR by enalapril were accompanied by a decrease in myosin V3 with concomitant increase in V1. However, regression had no effect on the expression of tropomyosin and troponin T isoforms, nor on the level of phosphorylation of tropomyosin. This study suggests that in SHR during enalapril treatment, the renin-angiotensin system plays an important role, either directly or indirectly, in the regulation of myosin isoform expression, the ventricular mass, and blood pressure, or at least in their interaction. The expres-

![Figure 4](image1.png)

Figure 4. Graph showing percent myosin isozyme V3 ± SEM in spontaneously hypertensive rats (SHR) at different ages, with enalapril treatment () and without enalapril treatment (). Twelve-week-old SHR were treated with enalapril for 0 to 9 weeks. Treatment was withdrawn from a group of rats after 9 weeks, and they were observed for an additional 9 weeks.

![Figure 5](image2.png)

Figure 5. Graph showing 1) the percent of tropomyosin (TM) phosphorylated ± SEM in spontaneously hypertensive rats (SHR) at different ages, with enalapril treatment () and without enalapril treatment () and 2) the β-tropomyosin level as percent of total tropomyosin present (), under the same conditions. Twelve-week-old SHR were treated with enalapril for 0 to 9 weeks. Treatment was withdrawn from a group of rats after 9 weeks, and they were observed for an additional 9 weeks.
sion of tropomyosin and troponin T isoforms and the phosphorylation of tropomyosin, however, appear to be independent of angiotensin II, left ventricular mass, and blood pressure in the SHR. Although troponin C and troponin I have not been investigated in the present study, it is of interest to determine whether the expression of troponin C and troponin I isoforms is affected during the development and regression of cardiac hypertrophy.

The amount of myosin V3 correlates significantly with the degree of hypertrophy in the SHR during regression with enalapril treatment (Figure 6A) but not in the control untreated SHR. The simplest explanation is that the left ventricular mass in the control group is already stabilized and only increases very slowly with age (Figure 3), whereas the more dramatic increase in the amount of V3 is essentially due to aging of the animals (Figure 6B). This suggests that the mechanism controlling the expression of the myosin isoforms is dependent on both aging and the early development of hypertrophy. During the enalapril treatment of SHR, the age effect is masked by the more acute process of regression of hypertrophy resulting in the observed increase in the expression of V3.

The hypertrophied hearts of SHR, with myosin in the fetal isoform pattern and the thin-filament proteins in the adult pattern, represent an interesting phenotype that functions differently from either the adult or fetal hearts of normotensive rats. Subtle differences in the structure and function of different isoforms of the same contractile protein have been reported. Myosin V3 has been shown to have lower actin-activated ATPase activity than the V1 isoform, which may account partially for the lower shortening velocity of the muscle tissue from hypertrophied hearts. In vitro experiments have shown that β-tropomyosin has a higher affinity for F-actin but a lower affinity for troponin T than α-tropomyosin. Phosphorylated tropomyosin has a greater propensity

Figure 6. Scatterplots showing correlation of percent myosin isozyme V3 with left ventricle weight/body weight ratio (L.V./B.W.) (panel A) in spontaneously hypertensive rats (SHR) treated with enalapril for 0 to 9 weeks (r=0.697, p<0.001), and with age (panel B) in SHR not treated with enalapril (r=0.832, p<0.001).
for head-to-tail polymerization, and strengthening of
this head-to-tail interaction by troponin T is substanc-
tially reduced by phosphorylation.30-33 The two tro-
ponin T isoforms from bovine heart function similarly
but have subtly different Ca2+ sensitivities in a re-
constituted system of contractile proteins.34 Although
structural and functional differences in the various
isoforms of the same contractile protein are often
subtle, a successful adaptation to the changing en-
vironment can be achieved by a well-orchestrated
coexpression of the appropriate mixture of isoforms.
It remains to be determined how different patterns of
expression of various contractile proteins can equip
the heart to adapt to different physiological demands.
Therefore, determination of different patterns of
protein expression in various models of cardiac hy-
pertrophy remains an important area of research.

Acknowledgment

We thank Dr. Jim J.-C. Lin of the Department of
Biology, University of Iowa for his generous gifts of
troponin T antibodies and Merck Frosst Canada for
the donation of enalapril maleate.

References

1. Swynghedauw B: Developmental and functional adaptation of
contractile proteins in cardiac and skeletal muscles. Physiol
Rev 1986;66:710–769
2. Wikman-Coffelt J, Parmley WW, Matson DT: The cardiac
3. Swynghedauw B, Schwartz K, Apstein CS: Decreased contrac-
tility after myocardial hypertrophy: Cardiac failure or successful
adaptation? Am J Cardiol 1984;54:437–440
4. Mahdavi V, Chambers AP, Nadal-Ginard B: Cardiac α- and
β-myosin heavy chain genes are organized in tandem. Proc
Natl Acad Sci USA 1984;81:2626–2630
5. Hoh JF, McGrath A, Hale PT: Electrophoresis analysis of
multiple forms of rat cardiac myosin: Effects of hypophysec-
tomy and thyroxetine replacement. J Mol Cell Cardiol 1977;10:
1053–1076
6. Mercadier JJ, Lompre AM, Wisniewsky C, Samuel JL, Berco-
vici J, Swynghedauw B, Schwartz K: Myosin isozenzyme
changes in several models of rat cardiac hypertrophy. Circ Res
1981;49:525–532
7. Gorza L, Pauletto P, Pessina AC, Sartore S, Schiaffino S:
Isomyosin distribution in normal and hypertensive rat ventricu-
lar myocardium: An immunohistochemical study. Circ Res
1981;49:1003–1009
8. Barany M: ATPase activity of myosin correlated with speed of
9. Schwartz K, Lecarpenter Y, Martin JL, Lompre AM, Merc-
cadier JJ, Swynghedauw B: Myosin isozyme distribution
 correlates with speed of myocardial contraction. J Mol Cell
Cardiol 1981;13:1071–1075
11. Mercadier JJ, Bouveret P, Gorza L, Shiffanno S, Clark WA,
Zak R, Swynghedauw B, Schwartz K: Myosin isoenzymes in
normal and hypertrophied human ventricular myocardium.
12. Gorza L, Mercadier JJ, Schwartz K, Thornell LE, Sartore S,
Schiaffino S: Myosin types in the human heart: An immuno-
fluorescence study of normal and hypertrophied atrial and
13. Mak AS, Smillie LB, Stewart G: Comparison of the amino acid
sequences of α- and β-tropomyosin. J Biol Chem 1980;255:
3647–3655
15. Montarras D, Fiszman MY, Gros F: Characterization of the
tropomyosin present in various chick embryo muscle types and
in muscle cells differentiated in vitro. J Biol Chem 1982;256:
4081–4086
16. Healey DA, Moir AJG, Perry SV: Phosphorylation of tropo-
myosin during development in mammalian striated muscle.
FEBS Lett 1982;146:115–118
17. Izumo S, Nadal-Ginard B, Mahdavi V: Protoonogenec induc-
tion and reprogramming of cardiac gene expression produced by
pressure overload. Proc Natl Acad Sci USA 1988;85:
339–343
18. Jin J-P, Lin JJ-C: Rapid purification of mammalian cardiac
 tropomyosin and its isoform switching in rat hearts during
19. Saggin L, Ausoni S, Gorza L, Sartore T, Schiaffino S: Troponin
T switching in the developing rat heart. J Biol Chem 1988;263:
14884–14892
20. Cooper TA, Or Dahl CP: A single cardiac troponin T gene
switches expression in embryonic and adult isoforms via develop-
22. Sabry MA, Dhoot GK: Identification and pattern of expres-
sion of a developmental isoform of troponin I in chicken and
24. Head GA, Adams MA: Time course of changes in barorecep-
tor reflex control of heart rate in conscious SHR and WKY: A
study of the cardiac vagus and sympathetic nerves. Can
Buckingham M: α-Skeletal muscle actin mRNA accumulates in
26. Sen S, Young DR: Role of sodium in modulation of myocar-
dial hypertrophy in renal hypertensive rats. Hypertension 1986;
8:918–924
27. Dussaule JC, Michel JB, Auzan C, Schwartz K, Corvol P,
Menard J: Effect of antihypertensive treatment on the left
ventricular isomyosin profile on one-clip, two kidney hyper-
tensive rats. J Pharmacol Exp Ther 1986;236:512–518
Scannapieco G, Libera LD, Carraro U, Pessina AC, Palu CD:
Ventricular myosin and creatine-kinase isoenzymes in hy-
tensive rats treated with captopril. Hypertension 1989;14:
556–562
29. Lohmeier EM: A comparison of the properties of rabbit
skeletal α- and β-tropomyosin (dissertation). University of
Alberta, Canada, 1982
30. Healey DH, Watson MH, Mak AS, Dubord P, Smillie LB:
Effect of phosphorylation on the interaction and functional
properties of rabbit striated muscle α- and β-tropomyosin.
31. Mak AS, Smillie LB, Barany M: Specific phosphorylation at
serine-283 of α-tropomyosin from frog skeletal and rabbit
skeletal and cardiac muscle. Proc Natl Acad Sci USA 1978;75:
3588–3592
32. Montgomery K, Mak AS: In vitro phosphorylation of tropo-
myosin by a kinase from chicken embryo. J Biol Chem 1984;
259:5555–5560
33. Watson MH, Taneja AK, Hodges RS, Mak AS: Phosphoryla-
tion of α- and β-tropomyosin and synthetic peptide ana-
34. Tobacman LS, Lee R: Isolation and functional comparison of
bovine cardiac troponin T isoforms. J Biol Chem 1987;262:
4059–4064

Key words: enalapril • hypertrophy • myosin • troponin • tropomyosin • spontaneously hypertensive rats
Regression of cardiac hypertrophy in spontaneously hypertensive rats by enalapril and the expression of contractile proteins.
T J Childs, M A Adams and A S Mak

Hypertension. 1990;16:662-668
doi: 10.1161/01.HYP.16.6.662

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1990 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/16/6/662