The aim of this study was to investigate the action of the heptapeptide angiotensin-(1-7) on the spontaneous activity of paraventricular neurons using microiontophoresis. Recent immunocytochemical investigations have shown that this product of angiotensin I is predominantly located in cells and fibers of the forebrain and brain stem. Our results show that most neurons in the paraventricular nucleus are excited by angiotensin-(1-7) at a dose of 50-80 nA. In comparison with angiotensin II or angiotensin III, the onset of response and the occurrence of the maximal effect were significantly delayed. With higher doses of angiotensin-(1-7), there was a decrease in latency and a dose-dependent increase in firing frequency. Of all the angiotensin compounds tested, angiotensin III was the most potent. Preliminary results obtained with an angiotensin antagonist show that the action of angiotensin II, angiotensin III, and angiotensin-(1-7) is blocked by the angiotensin receptor subtype 2 antagonist CGP 42112A. Because the angiotensin-(1-7) system in the brain is associated with central vasopressinergic pathways, vasopressin was tested in a similar way. Neurons in the paraventricular nucleus that were excited by iontophoretically applied angiotensins showed a weak response to vasopressin. Occasionally, a small excitatory action was observed. Our results support the hypothesis that the heptapeptide angiotensin-(1-7) is a biologically active neuropeptide. The data also suggest that amino terminal fragments of angiotensin II are not inactive degradation products. (Hypertension 1991;17:1111-1114)
intraperitoneal injection of 50 mg/kg thiopentanate sodium (Pentothal, Abbott laboratories, Zug, Switzerland). The tracheotomized animals were mounted in a stereotaxic frame, and their body temperature was maintained at 38°C by a regulated heating pad. After a part of the skull was removed, microelectrodes were inserted into the brain and placed stereotaxically in the paraventricular nucleus. At the end of the testing period, a fast green dye (FCF) marker was injected at the recording site to locate the electrode site histologically.

Extracellular spontaneous activity was recorded using conventional recording equipment through one barrel of a five-barrel glass micropipette containing 2 M NaCl with a tip diameter of approximately 2 μm. The other barrels of the micropipette contained the compounds to be ejected microiontophoretically with appropriate cationic or anionic currents: 1) [Ile⁵]Ang II (Sigma Chemical Co., St. Louis) prepared as a 10⁻¹⁰ M solution in distilled water, final pH 4.5; 2) [Ile⁵]Ang III (Sigma), 10⁻³ M, pH 4.5; 3) [Des-Phe⁴]Ang II, Ang-(1-7), synthesized by Dr. M. Khosla, Cleveland, Ohio, 10⁻³ M, pH 4.5; 4) [Arg⁷]vasopressin (Sigma), 10⁻² M, pH 4.5; 5) L-glutamate (BDH Ltd., Poole, UK), 1 M, pH 7.5; 6) acetylcholine chloride (Fluka Chemie AG, Buchs, Switzerland), 0.5 M, pH 3.5-4.0; and 7) the Ang II antagonist CGP 42112A, kindly provided by Dr. Marc deGasparo (CIBA-GEIGY Basel Ltd., Basel, Switzerland), 10⁻⁴ M, pH 4.5.

Compensation current through a channel containing sodium chloride was always used to prevent any direct current effects.

Results

Results were obtained from 35 paraventricular neurons. The majority of the neurons studied fired spontaneously at a relatively low rate, ranging from 0.2 to 2 spikes/sec. A small number of silent neurons were excited only after administration of either glutamate (10–50 nA) or acetylcholine (50–100 nA). Iontophoretic studies using angiotensins in the region of the paraventricular nucleus showed that most of the cells were excited by both Ang II and Ang III. An important technical consideration for microiontophoresis is the determination of the actual rate of microiontophoretic release for a given amount of ejection current (expressed in nanoamperes). Although considerable variation was observed between microelectrodes, the mean rate of Ang II and Ang III release was very similar: Ang II, 41.5±4.8 fmol/nA/min; Ang III, 45.1±8.0 fmol/nA/min. In all cells in which comparative recordings were made, Ang III usually was more potent than Ang II (Figure 1). Ang III responses were characterized by a lower threshold (Ang III average, 15 nA; Ang II, 28 nA) and a larger maximal response per nanoampere of current applied.

In a second series of experiments, we tested the effects of Ang-(1-7) in comparison to the excitatory effects of Ang III described earlier. Out of a total of 32 cells that responded to iontophoretically applied Ang III, 28 neurons also responded to Ang-(1-7). The effect was always excitatory, although the onset of responses and the occurrence of maximal responses were significantly delayed (Figure 1). In a comparative study using equal amounts (50 nA) of Ang III and Ang-(1-7), the average latency of Ang III was 20 seconds and that of Ang-(1-7) was 108 seconds. Correspondingly, the maximal responses were obtained after 48 seconds for Ang III and 142 seconds for Ang-(1-7). With higher doses of Ang-(1-7), we observed a decrease in latency and a dose-dependent increase in firing frequency. Figure 2 shows the statistical analysis of the maximal responses of Ang III and Ang-(1-7) ejected at doses of 40–50 nA each.

Because it has been shown that the Ang-(1-7) system in the brain is associated with central vasopressinergic pathways,¹⁹ we also tested the action of vasopressin on paraventricular neurons. Neurons located in the magnocellular part of the paraventricular nucleus usually responded to the ejection of angiotensins. The same neurons did not react to vasopressin, however (Figure 1). A small increase in activity was observed only occasionally. In contrast, a
clear excitatory action of vasopressin was detected on
neurons located in the lateral area adjacent to the
magnocellular part of the paraventricular nucleus.

In further experiments, the peptidergic Ang II
antagonist CGP 42112A,24 which has been shown to
block Ang receptor subtype II (or type A) was tested
iontophoretically on the excitatory action of Ang II,
Ang III, and Ang-(1-7). On all 12 neurons tested, the
excitatory action of all three peptides was blocked in a
reversible manner. The onset of antagonistic action
was seen within 1-2 minutes. Cells again were able to
be excited by the angiotensins within a similar period
after cessation of ejection. We also observed a de-
crease in spontaneous unit firing on most of the cells
(eight out of 12 neurons), suggesting that part of the
spontaneous activity is maintained by endogenous
brain Ang (Figure 3). The antagonistic action seems to
be specific on angiotensins, because neither the exci-
tatory responses to glutamate nor to acetylcholine
were affected. Furthermore, the use of the cholinergic
antagonist atropine affected the acetylcholine-stimu-
lated responses only.

Discussion

The experiments described above were done to
test the sensitivity of paraventricular neurons to the
N-terminal heptapeptide Ang-(1-7). Data obtained
from immunocytochemical investigations using a spe-
cific polyclonal antibody have shown that this hep-
tapeptide is located in cells and fibers associated with
central vasopressinergic pathways.19 This, together
with the fact that Ang-(1-7) stimulates the secretion
of vasopressin from hypothalamic brain explants15
and increases the synthesis of prostaglandin in the
vasa deferentia,16 led to the hypothesis that the
predominant metabolite of Ang I, Ang-(1-7), is
biologically active and may play a role as a neuro-
modulator. The clear activation of paraventricular
neurons by microiontophoretic administration of
Ang-(1-7) indicates that this substance interacts with
a possible Ang receptor in this area. This would seem
all the more likely because it has been shown that a
subtype 2 receptor antagonist blocks the excitatory
action of Ang II, Ang III, and Ang-(1-7) in a
reversible manner.

Differences in latency may account for variations
in the diffusion rate between the peptides or separate
sites of action (i.e., presynaptic versus postsynaptic
mechanisms). Alternatively, the excitatory effects of
Ang-(1-7) may be mediated by the release of pros-
taglandin through activation of non-Ca2+-dependent
cellular phospholipase. This possibility agrees with
the recent finding that the potent stimulatory action
of Ang-(1-7) on prostaglandin synthesis in astrocytes
is not associated with mobilization of Ca2+ from
intracellular stores.25 Direct demonstration of an
excitatory action of Ang-(1-7) on magnocellular neu-
rons of the paraventricular nucleus are novel find-
ings, providing evidence at a cellular level for a
modulatory action of this heptapeptide on the regu-
lation of vasopressin secretion. The observation that
the excitatory actions of Ang-(1-7) and other angiotensins occurred in subpopulations of the neurons that do not respond to the similar application of vasopressin further characterized the neuronal substrate involved in these actions.

A further obvious explanation for the delayed response could be that the peptide is being metabolized, and perhaps the metabolite is the active moiety.

There is the likelihood that aspartic acid from the N-terminus is being cleaved and may be giving the response. Therefore, it will be necessary to test Ang-(2-7) to answer this question.

In summary, these basic studies show a modulatory action of Ang-(1-7) on the spontaneous activity of vasopressinergic neurons in the rat.

References
10. Fitzsimons JT: The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat’s diencephalon J Physiol (Lond) 1971;214: 295–303

Key Words: angiotensins • vasopressins • iontophoresis • paraventricular hypothalamic nucleus
Neurophysiological responses to angiotensin-(1-7).
D Felix, M C Khosla, K L Barnes, H Imboden, B Montani and C M Ferrario

_Hypertension_. 1991;17:1111-1114
doi: 10.1161/01.HYP.17.6.1111

_Hypertension_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1991 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/17/6_Pt_2/1111

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Hypertension_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Hypertension_ is online at:
http://hyper.ahajournals.org//subscriptions/