Diabetes Mellitus and Hypertension

Murray Epstein and James R. Sowers

Diabetes mellitus and hypertension are common diseases that coexist at a greater frequency than chance alone would predict. Hypertension in the diabetic individual markedly increases the risk and accelerates the course of cardiac disease, peripheral vascular disease, stroke, retinopathy, and nephropathy. Our understanding of the factors that markedly increase the frequency of hypertension in the diabetic individual remains incomplete. Diabetic nephropathy is an important factor involved in the development of hypertension in diabetics, particularly type I patients. However, the etiology of hypertension in the majority of diabetic patients cannot be explained by underlying renal disease and remains “essential” in nature. The hallmark of hypertension in type I and type II diabetics appears to be increased peripheral vascular resistance. Increased exchangeable sodium may also play a role in the pathogenesis of blood pressure in diabetics. There is increasing evidence that insulin resistance/hyperinsulinemia may play a key role in the pathogenesis of hypertension in both subtle and overt abnormalities of carbohydrate metabolism. Population studies suggest that elevated insulin levels, which often occurs in type II diabetes mellitus, is an independent risk factor for cardiovascular disease. Other cardiovascular risk factors in diabetic individuals include abnormalities of lipid metabolism, platelet function, and clotting factors. The goal of antihypertensive therapy in the patient with coexistent diabetes is to reduce the inordinate cardiovascular risk as well as lowering blood pressure. (Hypertension 1992;19:403–418)

KEY WORDS • diabetes mellitus • diabetic nephropathy • essential hypertension • kidney failure

Diabetes mellitus and hypertension are two of the most common diseases in Westernized, industrialized civilizations, and the frequency of both diseases increases with increasing age.1–9 An estimated 2.5 to 3 million Americans have both diabetes and hypertension.10 Although diabetes mellitus is associated with a considerably increased cardiovascular risk,11–18 the presence of hypertension in the diabetic individual markedly increases morbidity and mortality.19 From data drawn from death certificates, hypertension has been implicated in 44% of deaths coded to diabetes, and diabetes is involved in 10% of deaths coded to hypertension.20 It has been estimated that 35–75% of diabetic complications can be attributed to hypertension.21 In contrast, the absence of hypertension is the usual finding in long-term survivors of diabetest.21,22 Thus, the coexistence of these two diseases likely contributes substantially to overall mortality in industrialized societies. Despite the critical importance of the coexistence of these two diseases, much information regarding their interaction remains unclear and controversial. Nevertheless, much information of theoretical and practical relevance is available, and there is considerable ongoing research exploring the relation between carbohydrate intolerance and hypertension.

It is not our intent to compile an exhaustive survey of the interrelation of hypertension and diabetes mellitus. Rather, we will emphasize selective issues that we believe are timely and have recently attracted increased attention and investigative interest. First, we will examine and highlight newer avenues of investigation, focusing on the role of abnormalities in vascular smooth muscle cation metabolism and the possibility that hyperglycemia may contribute to the hypertension. Evidence will be considered suggesting that hyperinsulinemia and insulin resistance may participate in the pathogenesis of hypertension by acting at the level of smooth muscle tissue. A possible role for elevated blood glucose levels as well as primary hemodynamic abnormalities as pathogenetic factors will also be surveyed.

The next section of this review will reconsider the pivotal role of diabetic nephropathy in the hypertension of diabetes. It is well appreciated both that coexisting hypertension exacerbates diabetic nephropathy and that diabetic nephropathy somehow results in a markedly increased risk of hypertension. The final section of this review will consider briefly the growing controversy relating to the possibility that specific classes of antihypertensive agents may confer beneficial effects on renal function above and beyond those attributable solely to blood pressure reduction.

Prevalence of Concomitant Hypertension

and Diabetes

The prevalence of hypertension in diabetic individuals appears to be approximately twofold that in the nondiabetic population.23–27 This is clearly the case for type I diabetes and is probably valid for type II diabetes as well, although the relation is somewhat more controversial with regard to the latter.28–31 A minority of

From the Medical Services, Department of Veterans Affairs Medical Centers, Miami, Fla., and Detroit, Mich., and the Department of Medicine, University of Miami School of Medicine, Miami, Fla., and Wayne State University School of Medicine, Detroit, Mich.

Address for reprints: Murray Epstein, MD, Professor of Medicine, Nephrology Section (111el), Veterans Affairs Medical Center, 1201 N.W. 16th Street, Miami, FL 33125.
studies have failed to discern an association between hypertension and diabetes.32,33 It has been suggested34 that the explanation for the apparent lack of an increased frequency of diabetes in some studies is an improper selection of controls. As discussed below, there are important differences between the two types of diabetes relating to age and to the presence and stage of diabetic nephropathy.

The prevalence of hypertension in diabetic patients is more frequent in men than in women before the fifth decade and more frequent in women thereafter.1 The prevalence of these coexistent conditions is higher in blacks compared with whites; both diseases are more common among the socioeconomically disadvantaged.29-30 In addition to race, age, and sex, greater body mass, a longer duration of diabetes, and the presence of persistent proteinuria are major determinants of elevated blood pressure, especially systolic pressure, in the diabetic population.1,3,5,21-38 Both systolic and diastolic blood pressures have been observed to be greater in adolescent type I diabetics than in their non-diabetic siblings.39 Thus, in addition to duration of diabetes, other poorly understood factors likely contribute to the higher prevalence of hypertension in individuals with diabetes mellitus.

Demographic Differences Regarding Hypertension in Type I Versus Type II Diabetes

Type I

Unless they have an unrelated cause of hypertension, patients with type I diabetes have normal blood pressure before the development of persistent proteinuria (Table 1) (albumin excretion rate greater than 300–500 mg/day, clinically detectable by dipstick). If nephropathy does not develop, these patients usually remain normotensive.21 At the time of recognition of microalbuminuria (albumin excretion rate of more than 30–70 mg/day, but less than 300 mg/day, detectable only by special techniques), the blood pressure in type I patients, and possibly in type II patients,40 is increased, although often within the normal range, and tends to increase in parallel with the extent of microalbuminuria.31-48 In addition, a marked increase in systolic blood pressure during exercise, disproportionate to that observed in normal individuals (i.e., unmasking of hyperresponsiveness in systolic blood pressure) seems to be a characteristic feature of longstanding diabetes and of incipient nephropathy.49,50 Once persistent proteinuria develops in type I patients, their systolic blood pressure begins to rise at a rate that has been suggested to average about 1 mm Hg per month.10,31 This phenomenon possibly occurs in type II diabetic patients as well.52

Slight elevation of blood pressure, microalbuminuria, decreased creatinine clearance (or supranormal glomerular filtration rate), and perhaps increased renal vascular resistance53 are interrelated markers for incipient diabetic nephropathy.42,47,53-55 Recently, Chavers and her colleagues55 have shown that microalbuminuria must be present together with either hypertension or decreased creatinine clearance, or both, to be a consistent indicator of glomerular structural abnormalities in type I patients.

With the onset of established diabetic nephropathy, clear-cut hypertension is common in type I diabetes.19,41,44,51,53,56-59 It has been suggested that without treatment, mean blood pressure increases at a yearly rate of about 5–8% in overt diabetic nephropathy.60

Type II

At least two studies have shown that type II diabetics have increased blood pressures that are, in part, independent of body weight.79,80 Whereas patients with type I diabetes are usually normotensive until overt renal disease develops, about 28% of type II patients are already
hypertensive at the time of diagnosis of diabetes (probably representing essential hypertension and relating in part to obesity). 24-27,30,56,61 The prevalence of hypertension increases markedly in the proteinuric state. 57,61-63 In a Japanese study of type II diabetes, 21 161 of 374 (43%) diabetic patients versus 215 of 1,197 (18%) control subjects were hypertensive. Of the diabetics, hypertension was observed in 71% of those with proteinuria, 48% of those with retinopathy, 61% with an abnormal electrocardiogram, and 54% with dyslipidemia.

In summary, hypertension tends to be a relatively late finding in type I diabetes, usually implying the existence of established diabetic renal disease. In contrast, hypertension commonly occurs in patients with type II diabetes before the onset of overt diabetic nephropathy.

Coexisting Factors That Affect the Medical Risks of Hypertension

Coexisting Diabetes and Hypertension

The presence of hypertension in patients with diabetes markedly enhances development of macrovascular and microvascular disease in these individuals. 79,94-71 Diabetic individuals with coexisting hypertension have a much greater prevalence of stroke and transient ischemic episodes than do normotensive diabetics. 2,64 Peripheral vascular disease is also increased in the presence of high blood pressure in the diabetic patient. 3,7,9,64-66 Both hyperinsulinemia and diabetes mellitus are major independent risk factors for accelerated atherosclerosis and ischemic heart disease. 11-18,27,28,65,67-78 Overall, the risk of cardiovascular death in diabetic patients is nearly doubled in the presence of hypertension. 65,78 Coexistence of hypertension and diabetes is also associated with acceleration of diabetic retinopathy. A relation between both systolic and diastolic blood pressure and both background 67-68 and proliferative 77,79 retinopathy has been reported. Hypertension also accelerates the development of diabetic nephropathy. 60-71,80 Both the onset of microalbuminuria 70,80 and the progression of renal disease after the onset of proteinuria 69 are accelerated by hypertension.

Hyperinsulinemia and Hypertension

Over the past several years increased attention has been given to the possible role of insulin resistance and hyperinsulinemia in linking obesity, diabetes, and hypertension to increased atherosclerotic vascular risk. 35,83,73,75,81-84 Several possible factors may help explain the epidemiological relation between elevated plasma insulin levels and cardiovascular disease. Insulin resistance and hyperinsulinemia are closely linked to elevated plasma triglyceride levels, low high density lipoprotein levels, and to a lesser extent, with elevated total and low density lipoprotein–cholesterol levels. 81,85-87 Insulin resistance and hyperinsulinemia may also affect atherosclerotic vascular risk by interfering with fibrinolysis. 88 A positive correlation exists between plasma insulin levels and those of fibrinogen and plasminogen activator inhibitor. 89,89 In experimental animal models, insulin promotes the development of diet-induced vascular atherosclerosis and overrides the protective effect of estrogen against atherosclerosis. 82,90-92 Insulin stimulates subintimal smooth muscle and fibroblast proliferation in cell culture, increases the uptake and esterification of lipoprotein-cholesterol by smooth

| Table 2. Effects of Insulin on Vascular Tissue That May Promote Atherosclerosis |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 1. Proliferation of vascular smooth muscle cells and fibroblasts. |
| 2. Increase uptake and esterification of LDL-cholesterol by subintimal smooth muscle cells and macrophages. |
| 3. Increases release of platelet-derived growth factor and insulin-like growth factors as well as other growth factors. |
| 4. Increase in connective tissue synthesis. |
| 5. Decrease in deesterification and removal of cholesterol from foam cells in the subintimal region of the vessel. |

LDL, low density lipoprotein.
by guest on April 13, 2017 http://hyper.ahajournals.org/ Downloaded from

Enhanced Vascular Smooth Muscle Contractility in the Diabetic State is Unclear.

Both insulinopenic and insulin-resistant rats also display exaggerated vasoconstrictive responses to various agonists. The precise reason for the enhanced vascular smooth muscle contractility responses to agonists such as norepinephrine and angiotensin II appear to be the hallmark of hypertension in both type I and type II diabetic individuals. Decreased baroreceptor reflex sensitivity as well as altered cardiac innervation may partially explain the marked variability of blood pressure and the propensity toward orthostatic hypotension observed in diabetics with hypertension. These latter characteristics, also seen in elderly hypertensive patients, suggest premature aging of the cardiovascular system in diabetic individuals with coexistent hypertension. In addition to premature vascular aging and its effect on vascular rigidity and resistance, other factors contribute to the pathophysiology of hypertension in diabetes, and these are reviewed below and listed in Table 3.

Increased Exchangeable Sodium

Diabetic hypertension is related both to an increase in total peripheral vascular resistance and to increased exchangeable sodium. On the average, exchangeable sodium is increased by about 10%, even in normotensive diabetics. Diabetics have an impaired ability to excrete an intravenous saline load and they fail to augment urinary sodium excretion normally in response to water immersion. Plasma volume may be higher than normal, even in the absence of hyperglycemia. The mechanism (or mechanisms) for renal sodium retention in diabetes has not been established. One concept is that increased tubular reabsorption of glucose simply results in the cotransport of greater amounts of sodium. It has also been postulated that sodium retention in diabetics might be related to a decreased ability to release natriuretic factors (including dopamine, prostaglandins, and kallikrein) and to the tubular effects of insulin (see below).

Enhanced Vascular Smooth Muscle Contractility

Increased peripheral vascular resistance and enhanced vascular smooth muscle contractility responses to agonists such as norepinephrine and angiotensin II appear to be the hallmark of hypertension in both type I and type II diabetic individuals. Vessels from both insulinopenic and insulin-resistant rats also display exaggerated vasoconstrictive responses to various agonists. The precise reason for the enhanced vascular contractility in the diabetic state is unclear. However, several possible abnormalities may explain this phenomenon. The role of accelerated atherosclerosis and increased vascular rigidity has previously been noted. Other factors related to alterations in vascular smooth muscle cation transport may play a key role in this enhanced vascular resistance. These alterations in cation transport could result in an increase in vascular smooth muscle cytoplasmic free calcium, which is a major determinant of vascular smooth muscle contractility. We will explore some of the evidence indicating that decreased insulin action, due to either insulin deficiency or resistance, could account for this increased vascular resistance.

Insulin appears to play an important role in regulation of two important membrane pumps, the Ca²⁺-ATPase and the Na⁺,K⁺-ATPase, in the insulin-resistant rat. Insulin exerts its effects on the same intracellular targets as physiologic stimuli such as adrenergic agents. Insulin may also act through a glucose metabolism-dependent mechanism. Insulin and other growth factors stimulate growth and proliferation of vascular smooth muscle cells. Insulin may also affect the development of clinical neurological disease in diabetic patients. As insulin appears to be the hallmark of hypertension in both type I and II diabetic individuals. The latter occurs before the development of clinical neurological disease in young diabetics. Decreased baroreceptor reflex sensitivity as well as altered cardiac innervation may partially explain the marked variability of blood pressure and the propensity toward orthostatic hypotension observed in diabetics with hypertension. These latter characteristics, also seen in elderly hypertensive patients, suggest premature aging of the cardiovascular system in diabetic individuals with coexistent hypertension. In addition to premature vascular aging and its effect on vascular rigidity and resistance, other factors contribute to the pathophysiology of hypertension in diabetes, and these are reviewed below and listed in Table 3.

Table 3. Typical Profile of Blood Pressure Regulatory Mechanisms in the Hypertensive Diabetic Patient

<table>
<thead>
<tr>
<th>Factor</th>
<th>Typical findings in hypertensive diabetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total exchangeable sodium</td>
<td>Typically increased</td>
</tr>
<tr>
<td>Plasma renin activity</td>
<td>Low normal to low</td>
</tr>
<tr>
<td>Plasma norepinephrine</td>
<td>Usually normal in nonazotemic nonketotic patients</td>
</tr>
<tr>
<td>Plasma aldosterone</td>
<td>Low to normal low</td>
</tr>
<tr>
<td>Baroreceptor sensitivity</td>
<td>Typically decreased</td>
</tr>
<tr>
<td>Vascular compliance</td>
<td>Typically increased</td>
</tr>
<tr>
<td>Peripheral vascular resistance</td>
<td>Typically increased</td>
</tr>
<tr>
<td>Vascular pressor responses</td>
<td>Typically present in type I patients</td>
</tr>
<tr>
<td>Evidence of renal dysfunction</td>
<td>Often increased in type II patients</td>
</tr>
<tr>
<td>Central adiposity</td>
<td>Typically increased in type II patients</td>
</tr>
<tr>
<td>Insulin resistance</td>
<td>Often present in both type I and II diabetic states</td>
</tr>
</tbody>
</table>

Enhanced vascular smooth muscle contractility responses to agonists such as norepinephrine and angiotensin II appear to be the hallmark of hypertension in both type I and type II diabetic individuals. Vessels from both insulinopenic and insulin-resistant rats also display exaggerated vasoconstrictive responses to various agonists. The precise reason for the enhanced vascular contractility in the diabetic state is unclear. However, several possible abnormalities may explain this phenomenon. The role of accelerated atherosclerosis and increased vascular rigidity has previously been noted. Other factors related to alterations in vascular smooth muscle cation transport may play a key role in this enhanced vascular resistance. These alterations in cation transport could result in an increase in vascular smooth muscle cytoplasmic free calcium, which is a major determinant of vascular smooth muscle contractility. Insulin appears to play an important role in regulation of two important membrane pumps, the Ca²⁺-ATPase and the Na⁺,K⁺-ATPase, in the insulin-resistant rat. Insulin exerts its effects on the same intracellular targets as physiologic stimuli such as adrenergic agents. Insulin may also act through a glucose metabolism-dependent mechanism. Insulin and other growth factors stimulate growth and proliferation of vascular smooth muscle cells. Insulin may also affect the development of clinical neurological disease in diabetic patients. As insulin appears to be the hallmark of hypertension in both type I and II diabetic individuals. The latter occurs before the development of clinical neurological disease in young diabetics. Decreased baroreceptor reflex sensitivity as well as altered cardiac innervation may partially explain the marked variability of blood pressure and the propensity toward orthostatic hypotension observed in diabetics with hypertension. These latter characteristics, also seen in elderly hypertensive patients, suggest premature aging of the cardiovascular system in diabetic individuals with coexistent hypertension. In addition to premature vascular aging and its effect on vascular rigidity and resistance, other factors contribute to the pathophysiology of hypertension in diabetes, and these are reviewed below and listed in Table 3.
sugest that insulin resistance and the accompanying hyperinsulinemia are associated with enhanced Na\(^+\)-H\(^+\) exchange (Figure 1).

The Na\(^+\)-H\(^+\) antiporter is a ubiquitous transport system that is involved in regulation of intracellular pH, cell volume, and cell growth and is linked to Ca\(^{2+}\) exchange.\(^{146,149}\) It has been postulated that enhanced Na\(^+\)-H\(^+\) antiport activity may account for increased cell [Ca\(^{2+}\)]\(_i\), in essential hypertensive subpopulations.\(^{146}\) An increase in [Ca\(^{2+}\)]\(_i\), as a result of enhanced Na\(^+\)-H\(^+\) antiport activity could then account for the increased vascular hypertension associated with insulin resistance and associated hyperinsulinemia.\(^{115,125,126}\) Increased Na\(^+\)-H\(^+\) exchange activity would also lead to intracellular alkalization, which is a known stimulator of protein synthesis and cell proliferation,\(^{146}\) which could promote vascular remodeling, hypertrophy, and accelerated atherosclerosis.\(^{82,148,150}\) Further, Na\(^+\)-H\(^+\) exchange may represent a transmembrane signal for various growth factors,\(^{151-152}\) which could promote vascular remodeling, hypertrophy, and accelerated atherosclerosis, all of which occur in states of hypertension associated with diabetes mellitus.

Renin-Angiotensin Axis

The role of the renin-angiotensin axis in the pathogenesis of diabetic hypertension remains controversial.\(^{59,118,154,155}\) Reports of plasma renin activity (PRA) levels in diabetes mellitus have been highly variable, with some investigators finding low values,\(^{156,157}\) many reporting normal values,\(^{158-161}\) and a few noting high PRA levels. Presumably these inconsistencies are attributable to the complex interplay of several modulating influences, including diet and age.\(^{154}\)

Most investigators have reported that PRA is low in patients with diabetic nephropathy and retinopathy.\(^{156,157,162,163}\) Nevertheless, one study actually noted high levels of PRA in diabetic patients with retinopathy.\(^{164}\) Suppression of PRA is probably related, at least in part, to volume expansion and may also relate to an increase in [Ca\(^{2+}\)], which is also a factor modulating vasoconstriction and hypertension. PRA is also decreased in diabetic patients with established autonomic neuropathy, which suggests that neural control of renin release is altered in this disorder.\(^{165-166}\) In contrast to the above observations, normal levels of PRA have been found in most studies of diabetic patients who had no clinical evidence of microvascular complications, including nephropathy.\(^{158-161}\) Collectively, these findings suggest that changes in the renin-angiotensin system may be linked in part to the onset of microvascular complications in diabetes mellitus.

It has been suggested that because of a high level of angiotensin converting enzyme in diabetics (possibly reflecting microvascular damage in retina and kidney),\(^{169}\) angiotensin II levels may not be low, even when PRA is suppressed.\(^{56}\) On the other hand, some investigators have observed low concentrations of angiotensin II despite high levels of converting enzyme.\(^{59}\) As discussed below, it has been suggested that angiotensin II, as a consequence of its proteinuric effects and its enhancement of the mesangial movement of macromolecules,\(^{172}\) is a factor independent of hypertension that predisposes to or accelerates diabetic nephropathy.\(^{173}\) Indeed, there is substantial but inconclusive evidence that by multiple actions, angiotensin II exerts detrimental renal effects contributing to the progression of renal failure.

Abnormalities in renin processing may contribute to the changes in PRA levels described in diabetes mellitus. Increased levels of inactive renin have been noted in several studies of diabetic patients, which suggests an inability to normally activate renin.\(^{174-177}\) High levels of inactive renin have been noted consistently in diabetes with microvascular complications. In this regard, Luetscher and his colleagues\(^{178}\) have reported a close

Figure 1. Schematic diagram depicting mechanisms regulating contraction in vascular smooth muscle cells and proposed targets of insulin action. Pivotal steps in regulation of contraction are indicated by circled numbers.
association between a high level of plasma inactive renin and the presence of microvascular complications.

In summary, the available evidence suggests that when corrected for sodium intake and age, PRA and angiotensin II in diabetic patients tend to be low as compared with nondiabetic subjects. Finally, it has been suggested that elevated levels of plasma inactive renin may correlate with the presence of microvascular complications in diabetic subjects.

Role of Hyperglycemia in the Pathogenesis of Hypertension

Chronic hyperglycemia likely contributes to the genesis of hypertension in diabetic individuals through several mechanisms. One such hypertensive effect engendered by hyperglycemia is that of sodium retention and the increase in exchangeable body sodium that has been observed in diabetic hypertensive individuals. Hyperglycemia results in glomerular hyperfiltration of glucose, which in turn, stimulates the proximal tubular glucose-Na+ cotransporter. This mechanism is insulin independent and is rapidly operative, as evidenced by elevated proximal tubular cell Na+ concentration and Na+,K+-ATPase activity within 4 days of streptozotocin-induced hyperglycemia in rats. Thus, sodium retention occurs in association with mild-to-moderate hyperglycemia and likely contributes to increased total exchangeable Na+ and blood pressure elevations in diabetic hypertensive patients.

Chronic hyperglycemia may also contribute to increased vascular rigidity by promoting vascular structural changes. At high concentrations, glucose appears to have a direct toxic effect on endothelial cells, which may result in decreased endothelial-mediated vascular relaxation, increased constriction, promotion of vascular smooth muscle cell hyperplasia, and vascular remodeling.

High glucose levels mimicking the diabetic hyperglycemic state have also been shown to induce fibronectin and collagen IV overexpression in cultured human vascular endothelial cells. Enhanced expression of fibronectin and collagen IV may further contribute to endothelial dysfunction. Fibronectin is a glycoprotein that has a complex role in cell matrix interactions, and its increased expression has been associated with thickened glomerular basement membranes and mesangium. Thus, hyperglycemia-induced local synthesis of fibronectin by endothelial cells may contribute directly to endothelial dysfunction as well as indirectly to increases in basement membrane production.

There is considerable evidence that hyperglycemia accelerates formation of nonenzymatic advanced glycosylation products, which accumulate in vessel wall proteins. The rate of this accumulation is proportional to the time-integrated blood glucose level over long periods of time. A highly significant correlation has been noted between accumulation of increased levels of advanced glycosylation end products and vascular complications. Vlassara et al have identified a membrane-associated macrophage receptor that specifically recognizes proteins to which advanced glycosylated end products are bound. The binding of proteins with advanced glycosylation end products to macrophage receptors induces the synthesis and secretion of tumor necrosis factors and interleukin-1. These cytokines, in turn, stimulate other cells to increase protein synthesis and to proliferate. Interleukin-1 causes vascular smooth muscle cells, mesangial cells, and endothelial cells to proliferate and increases glomerular Type IV collagen synthesis. Interleukin-1 and tumor necrosis factors induce the expression of the protooncogenes c-myc and c-fos. Further, the growth-promoting effects of tumor necrosis factors and insulin are synergistic.

Tumor necrosis factors appear to stimulate platelet-derived growth factor-like mitogens from both aggregating platelets and endothelial cells by causing thrombosis-promoting alterations in the endothelial cell surface. As extensively reviewed, these alterations include induction of a tissue factor-like procoagulant, suppression of the anticoagulant protein C pathway, and synthesis of an inhibitor of plasminogen activator. The thrombotic changes may then induce release of platelet-derived growth factor from aggregating platelets and from endothelial cells through receptor-mediated thrombin stimulation. Thus, prolonged hyperglycemia could lead to excessive production of extracellular matrix and proliferation of vascular smooth muscle cells as a result of an increase in the number of highly cross-linked proteins with advanced glycosylated end products, with resulting hypertrophy and vascular remodeling. This could, in turn, contribute to the enhanced vascular constriction and accelerated atherosclerosis characteristic of diabetic vasculature.

The observation that chronic hyperglycemia is associated with decreased elasticity of connective tissues in arterial walls may also be related, in part, to increased advanced glycosylation. In addition to irreversible nonenzymatic glycosylation of structural protein, hyperglycemia leads to glycosylation of apolipoproteins, which may increase the atherogenicity of lipoprotein molecules, as recently reviewed.

Hyperinsulinemia and Insulin Resistance

Hyperinsulinemia associated with insulin resistance in obese individuals with type II diabetes could contribute to elevated blood pressure by several mechanisms. Insulin has been demonstrated to cause sodium reabsorption at both proximal and distal tubular sites. Data from studies conducted by Rocchini et al suggest that obese adolescents are sensitive to the sodium-retaining consequences of hyperinsulinemia produced by the acute euglycemic clamp procedure. This salt-sensitivity could be attenuated by weight reduction and by the accompanying reduction in insulin levels. However, other investigations of obese adults have demonstrated that weight reduction is accompanied by blood pressure reduction, even when normal salt intake is maintained. Further, it has been recently found that inducing hyperinsulinemia in dogs by chronic insulin infusion did not increase hypertension in spite of salt retention. Thus, the role of insulin-induced sodium retention in the pathogenesis of hypertension needs further investigation.

It has been suggested that hyperinsulinemia, which exists in nonobese, nondiabetic persons with hypertension as well as in obese, insulin-resistant patients with hypertension, could elevate blood pressure by stimulating sympathetic nervous system activity (Figure 2). Nevertheless, acute or subacute insulin...
infusions that simulate physiological hyperinsulinemia have recently been shown to decrease peripheral vascular resistance despite increasing sympathetic nerve activity. Further, insulin administration causes hypotension in the absence of a compensatory rise in sympathetic nervous system activity, and glucose ingestion associated with accompanying hyperinsulinemia has been shown to decrease peripheral vascular resistance despite increasing sympathetic nerve activity. These observations suggest that hyperinsulinemia per se does not acutely cause hypertension in spite of its relatively acute or subacute effects on the sympathetic nervous system. However, prolonged hyperinsulinemia may play a role in the pathogenesis of sustained hypertension in type II diabetics through promotion of atherosclerosis, vascular remodeling, and other mechanisms that have not been thoroughly explored.

Insulin resistance in the type II diabetic individual may play a role in the pathogenesis of hypertension. The crucial role of insulin in maintenance of normal cation transport activity has previously been discussed in this review (Figure 1). Insulin resistance at the level of vascular smooth muscle tissue could interfere with normal activity of Na⁺,K⁺-ATPase and Ca²⁺-ATPase, which could result in increased [Ca²⁺]. Recent work by Standley et al. has demonstrated that insulin attenuates vascular smooth muscle Ca²⁺ influx by both receptor- and voltage-operated channels. Thus, decreased action of insulin on vascular smooth muscle tissue could result in decreased ability to modulate basal glucose uptake. These observations of Lillioja et al. are consistent with the concept that insulin sensitivity is integrally related to skeletal muscle blood flow and relative skeletal muscle fiber type. There is evidence that physical training, which enhances insulin sensitivity, also causes an increase of slow twitch red skeletal muscle fibers and increased capillary/fiber ratio.

A recent report by Baron et al. supports the importance of skeletal muscle capillary density is evidenced by the fact that skeletal muscle glucose delivery is an important determinant of skeletal muscle fiber type. There is evidence that physical training, which enhances insulin sensitivity, also causes an increase of slow twitch red skeletal muscle fibers and increased capillary/fiber ratio. The importance of skeletal muscle capillary density is evidenced by the fact that skeletal muscle glucose delivery is an important determinant of skeletal muscle fiber type.
individuals had high postprandial glucose and insulin levels but did not increase their postprandial skeletal muscle blood flow. In contrast, lean individuals had lower insulin and glucose values and an associated increase in postprandial muscle blood flow. When this investigative team compared obese and non-obese subjects with type II diabetes with and without hypertension, they observed greater insulin resistance if hypertension was present in subjects with type II diabetes provided the subjects were lean but not if they were obese. This could indicate that the etiology of insulin resistance in obese and lean subjects with type II diabetes mellitus is different in the presence of hypertension or that the insulin resistance of obesity and hypertension are one and the same. Natali et al. demonstrated that forearm skeletal muscle showed significant insulin resistance, which was selective for nonoxidative glucose metabolism, likely related to impaired glucose conversion to glycogen. These investigators suggested that this skeletal muscle insulin resistance resulted from a post-receptor defect in insulin action. However, they also suggested the possibility that this resistance could be related, in part, to a maldistribution of muscle blood flow, a qualitative difference in fiber insulin sensitivity, or both (i.e., relatively increased fast twitch white fibers displaying decreased insulin sensitivity).

In summary, it is apparent that the etiology of insulin resistance seen in essential hypertension is incompletely understood. It is likely that there is more than one abnormality. Insulin insensitivity at the level of skeletal muscle, which accounts for most of the peripheral glucose use, probably involves various combinations of abnormalities of skeletal muscle fiber type and blood flow as well as post-receptor defects in insulin action such as membrane glucose transport, decreased activity/concentration of glycogen synthase (the rate-limiting enzyme for glycogen synthesis), or both.

Diabetic Nephropathy and Its Relation to Hypertension

Diabetic nephropathy is a devastating complication accounting for an important part of the excess mortality of diabetics, perhaps even more so than hypertension.

For both type I and type II individuals, diabetic nephropathy is currently believed to be the most impor-
The intimate relation between diabetic nephropathy and hypertension mandates consideration in any review of hypertension and diabetes mellitus. First, as diabetic nephropathy progresses, the prevalence of hypertension increases dramatically. Concomitantly, the available data strongly suggest that diabetic nephropathy is exacerbated by coexisting hypertension.

Persistent microalbuminuria presages diabetic nephropathy in about 80% of type I and perhaps 25% of type II patients. Microalbuminuria is, along with marginally elevated systolic blood pressure and decreased creatinine clearance (or perhaps supranormal glomerular filtration rate at an earlier stage?), one of the major predictors of diabetic nephropathy and early mortality in both type I and type II patients. It also heralds the development of cardiovascular disease.

Determining whether microalbuminuria signifies diabetic nephropathy or is attributable to hypertension per se is unclear. In essential hypertension, elevated urinary albumin excretion may result from systemic blood pressure greater than 170 or 180 mm Hg or diastolic blood pressure greater than 100 mm Hg. Christensen and his associates have shown that plotting urinary albumin excretion against blood pressure differentiates between patients with hypertension associated with either overt or incipient diabetic nephropathy ("diabetic hypertension") and nondiabetic (and diabetic) individuals with essential hypertension. At a mean arterial pressure of 125 mm Hg, diabetics had an average albumin excretion approximately a hundredfold greater than patients with essential hypertension. Similarly, at an average albumin excretion rate of 100 µg/min, mean pressure was about 70 mm Hg higher in the nondiabetic patients with essential hypertension than in patients with diabetic hypertension. In summary, microalbuminuria is, along with metabolic and otherwise, that are alleged to occur in diabetic patients, considered here. It seems probable that several etiologic factors act in concert to promote the development of diabetic nephropathy and end-stage renal disease. Patients with a genetic predisposition for diabetes, hypertension, or both, appear to be more vulnerable to vascular damage in the presence of mild-to-moderate hyperglycemia than in patients with the same degree of hyperglycemia but without genetic predisposition. Presumably such a genetic predisposition is most likely abetted by several risk factors, including smoking and race. Figure 5 is a schema depicting known and putative pathogenic mechanisms whereby genetic predisposition acting in concert with diverse metabolic factors, defective regulation of preglomerular resistance vessels, and systemic hypertension lead to glomerular injury and progression of diabetic nephropathy.

Therapy

It appears to be universally accepted that the treatment of hypertension reduces cardiovascular risk and slows the rate of progression of diabetic renal disease. Indeed, Hasslacher et al. have proposed that the apparent reduced prevalence of azotemia in diabetics during the period 1978–1983 compared with 1966–1971 might be accounted for by better control of blood pressure. The therapy of hypertension in the diabetic patient represents a challenge both to lower the blood pressure and to concomitantly avoid or minimize the side effects, metabolic and otherwise, that are alleged to occur more commonly than in the nondiabetic population.

Pharmacotherapy

Considerable controversy exists regarding the use of antihypertensive therapy in the diabetic. Thus, the final report on the diagnostic and therapeutic recommendations of The Working Group on Hypertension in Diabetes was followed by an article by Kaplan and his colleagues providing a therapeutic viewpoint differing considerably from that of The Working Group. Kaplan et al. objected to the stepped-care approach and recommended proceeding to full doses of one drug before considering a second and substituting another medication for one that has proved ineffective rather than adding a second agent to the first. Furthermore, they emphasized both the disadvantages of the use of...
The observations from Brenner's laboratory have provided a theoretic framework for renal function above and beyond those attributable solely to blood pressure reduction per se. This topic has been considered in a number of recent articles and others have shown either no effect at all or an actual worsening of the proteinuria.

A number of investigators recently examined the possibility that calcium antagonists may also be beneficial in this clinical setting. They have been reviewed recently. In a number of recent studies, these investigators have sought to compare calcium antagonists with ACE inhibitor therapy in conferring beneficial effects on glomerular permeability to proteins and, in a few instances, in attenuating progression in patients with established diabetic glomerular disease. The reports have been widely divergent. Although calcium antagonist therapy has been found to diminish proteinuria significantly in some studies, others have shown either no effect at all or an actual worsening of the proteinuria.

It must be emphasized that these studies were all of a short duration, thereby confounding their interpretation. In contrast, The Melbourne Diabetic Nephropathy Study Group has recently reported the 12-month results of their prospective, randomized study comparing the effects of the ACE inhibitor perindopril with those of the calcium antagonist nifedipine on blood pressure and microalbuminuria. After 12 months of therapy, the investigators observed that both drug regimens were equally efficacious in reducing blood pressure and albumin excretion in hypertensive patients. The reasons for these apparently discrepant findings have not been delineated. Additional studies will be required to elucidate the determinants of these varying responses. Aside from the relative antiproteinuric efficacy of these differing classes of drugs, what must be determined is the long-term effects of ACE inhibitors and calcium antagonists on the natural course of decline of glomerular filtration rate. Finally, the demonstration in several studies that calcium antagonists ameliorated proteinuria raises important questions regarding the mechanisms whereby these agents confer their renal protective effects. Presumably, because calcium antagonists preferentially reduce the resistance of the afferent arteriole, an increase in glomerular capillary pressure should eventuate. The apparent ability of calcium antagonists to ameliorate proteinuria despite a failure to reduce glomerular capillary pressure suggests an important role for nonhemodynamic factors in affording renal protection.

Future Considerations

In summary, it is apparent that the hypertension of diabetes mellitus constitutes a fascinating clinical constel-
lation with a complex and multifactorial pathophysiology. In addition to established mediators of increased peripheral vascular resistance and increased exchangeable sodium, increasing attention centers on the possible role of insulin resistance and hyperinsulinemia in mediating hypertension, and linking obesity, diabetes, and hypertension to increased atherosclerotic vascular risk.

Elevated insulin levels have been associated epidemiologically with increased coronary heart disease. Hyperinsulinemia may accelerate the atherosclerotic process by interfering with fibrinolysis, by stimulating proliferation of smooth muscle cells and fibroblasts, by increasing the incorporation of low density lipoprotein–cholesterol into smooth muscle cells in the vascular intima, and by promoting an increase in triglycerides and a reduction in high density lipoprotein–cholesterol. The precise mechanisms by which hyperinsulinemia promotes atherosclerosis warrants further consideration.

Hyperinsulinemia and insulin resistance likely contribute to hypertension by mechanisms that remain incompletely defined. In recent short-term studies, hyperinsulinemia did not appear to be associated with the development of hypertension. However, more long-term effects of hyperinsulinemia on blood pressure need to be clarified. For example, it is quite likely that hyperinsulinemia may contribute, in the long term, to development of hypertension via effects of vascular remodeling and atherosclerotic changes. One mechanism by which deficient vascular smooth muscle cellular insulin action may contribute to the increased peripheral vascular resistance, characteristic of hypertension in diabetic states, is via the resultant abnormalities in cellular cation metabolism. However, mechanisms by which insulin regulates cellular cation transport and intracellular calcium metabolism require further elucidation to more precisely define the role of insulin deficiency and resistance in contributing to the development of hypertension.

Increasing investigation should also focus on identifying appropriate antihypertensive agents that not only lower blood pressure but also reduce cardiovascular risk and retard the rate of progression of diabetic renal disease. In light of recent proposals that ACE inhibitors and possibly calcium antagonists may be advantageous in conferring renal protection in diabetic nephropathy, prospective long-term studies will be needed to further delineate and corroborate these actions. Aside from the antiproteinuric effects of these different classes of drugs, what must be determined is the long-term effects of ACE inhibitors and calcium antagonists on the natural course of decline of glomerular filtration rate and, if possible, on the progression of anatomic abnormalities.

Acknowledgments

Portions of this article are adapted with permission from Cardiovascular Risk Factors 1990;1:25–46.

We thank Elsa V. Reina and Diane Jones for secretarial assistance.

References

Hypertension Vol 19, No 5 May 1992

64. McNamn D: Diabetic angiopathy--its lessons in vascular patholgy. Am Heart J 1978;96:401-403

72. Pyorala K: Relationship of glucose tolerance and plasma insulin to the occurrence of coronary heart disease: Results from two population studies in Finland. Diabetes Care 1979;2:131-141

76. Schoenfeld G: Diabetes, lipoproteins, and atherosclerosis. Metabolism 1985;34:45-50

79. O'Hare JA, Ferris JB, Twomey B: Poor metabolic control, hypertension and microangiopathy independently increase the transplantable escape rate of albumin in diabetes. Diabetologia 1983;25:290-296
Epstein and Sowers Diabetes Mellitus and Hypertension 415

130. Wong EC, Sacks DB, Laurino JP, McDonald JM: Characteristics of calmodulin phosphorylation by the insulin receptor kinase. Endocrinology 1988;123:1830-1836
171. Misbin RI, Grant MB, Pecker MS, Atlas SA: Elevated levels of plasma prorenin (inactive renin) in diabetic and nondiabetic patients with autonomic dysfunction. J Clin Endocrinol Metab 1987;64:964-968

416 Hypertension Vol 19, No 5 May 1992

Diabetes mellitus and hypertension.
M Epstein and J R Sowers

Hypertension. 1992;19:403-418
doi: 10.1161/01.HYP.19.5.403

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1992 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/19/5/403

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/