Mechanism of Enhanced Blood Pressure Rise After Reclipping Following Removal of a Renal Artery Clip in Rats

ROB TEN BERG, PH.D., AND WYBREN DE JONG, M.D.

SUMMARY The effect of removing a renal artery clip 14 to 18 days after its application was studied in two-kidney, one clip hypertensive rats. Blood pressure decreased to a normotensive level within 24 hours after the removal of the clip. The cardiovascular effects of reapplication of the clip and infusion of renin, angiotensin II, and norepinephrine were assessed at that time. Reapplication of the clip to the unclipped renal artery was followed in 1 hour by an increase in blood pressure to the level of sham-operated renal hypertensive rats. After reapplication of the clip, plasma renin activity increased to the same level as after the initial application. Application of the clip to the contralateral renal artery did not affect blood pressure and failed to increase plasma renin activity. It appears that renin release is a prerequisite for the rapid rise of blood pressure after reapplication of the clip. The infusion of renin, angiotensin II, and norepinephrine for 90 minutes caused an enhanced blood pressure response similar to that observed following reapplication of the clip. The increase in blood pressure in control rats was associated with bradycardia, which was absent in unclipped rats. The enhanced response of unclipped rats to an infusion of renin was abolished by pithing. It is concluded that removal of a renal artery clip unmasks a hyperreactivity of the cardiovascular system to reapplication of the clip. (Hypertension 2: 4-13, 1980)

KEY WORDS • two-kidney, one clip hypertension • renin • angiotensin II • norepinephrine • plasma renin activity

In rats with an intact contralateral kidney, a small rise of blood pressure (10–20 mm Hg) occurs within 1 to 2 hours following the application of a solid silver clip to the left renal artery.1,2 The blood pressure increases gradually to a stable level within 1 to 3 weeks, depending on the size of the clip used.3 One day after the removal of the clip in rats whose systolic blood pressure had reached 200 mm Hg or more, the blood pressure had decreased to a normotensive level.1,2,4,6 Reapplication of the clip to the unclipped renal artery was followed by a rise in blood pressure with hypertensive levels being reached within 2 hours.1,5 In two-kidney, one clip hypertensive rats an augmented secretion of renin and a retention of water and sodium appear to be important factors for the development and maintenance of hypertension.6,8 On the other hand, the enhanced blood pressure response of unclipped rats to reapplication of the clip points to an increased reactivity of the cardiovascular system. Such a change in the reactivity of the cardiovascular system could equally well contribute to the maintenance of the hypertension.8 The present study in renal hypertensive rats, unclipped rats, and normotensive control rats explored the blood pressure response and the response of the renin-secreting system to application of the clip to the unclipped or to the contralateral renal artery. The blood pressure response to renin, angiotensin II, and norepinephrine given intravenously was assessed as well.

METHODS

Animals

Male rats of a Wistar strain (outbred stock, WU/Cpb, Zeist, the Netherlands) weighing 140–160 g were used. Rats had free access to food (Trouw, Amsterdam, the Netherlands; 111 μEq sodium/g) and tap water. They were housed in a temperature-controlled room (22–24°C) illuminated between 5 a.m. and 7 p.m.

General Procedures

Under ether anesthesia, all rats underwent two operations. During the first operation a solid silver clip with an internal diameter of 0.20 mm was applied to the left renal artery, leaving the contralateral kidney undisturbed.3 Control rats were operated on in the same way, but the clip was not applied (sham procedure). After 14 to 18 days the systolic blood pressure was checked, under light ether anesthesia, by a tail sphygmographic method. The systolic blood pressure and heart rate of the sham-operated rats were 127 ± 1 mm Hg and 390 ± 3 beats/min (n = 106) and of the hypertensive rats 196 ± 2 mm Hg and
Contralateral (right) renal artery (n = 8); NS (Normal-pressure was thus recorded for 2 hours after the operation). Angiotensin II (A) was started 30 minutes after the operation, as in Experiment 1. This procedure enables us to compare blood pressure increases, induced by reclip- or the infusions, for the same postoperative period. Renal hypertensive rats (H), unclipped rats (U), and control rats (N) received an infusion of partially purified rat kidney renin in a dose of 6.25 10^-3 Goldblatt Units (GU)/kg/min, or angiotensin II (Hypertensin, CI8A) in a dose of 270 ng/kg/min, or saline. The rate of the infusion was 10 µl/min.

Experiment 3

The caudal artery and jugular vein were cannulated in the same way as in Experiment 2. The rats were tested 4–5 hours after the operation and also 24 hours after removal of the clip. Intravenous bolus injections of angiotensin II were given to unclipped and control rats. Different doses were given to the same rat, with an interval of 15 minutes between them.

Intravenous infusions of angiotensin II and norepinephrine were given to unclipped and control rats. Different doses of angiotensin II and norepinephrine were given to the same rat. The infusions of angiotensin II and norepinephrine lasted 10 minutes and were separated by a 10-minute period during which saline was infused. The infusions with angiotensin II were repeated 24 hours later (48 hr after the removal of the clip). Intravenous infusions of renin were given to unclipped and control rats. The infusions were given for 90 minutes in three different doses. Each rat received only one dose of renin, and at the end of the infusion the rats were decapitated. Trunk blood was collected for the estimation of plasma renin activity. Infusions of norepinephrine were given to unclipped and control rats in the same way as the infusion of renin.

Experiment 4

Unclipped rats and control rats were pithed, 24 hours after the removal of the renal artery clip or after sham operation, just before the cannulation of the caudal artery and jugular vein as described in Experiment 2. A conically ending steel rod 1.7 mm in diameter, which was designed to completely destroy the spinal cord, was inserted through the right orbital fossa under ether anesthesia. The steel rod was carefully pushed to the end of the spinal canal. Artificial respiration was applied throughout the experiment with a Palmer pump (68 strokes/min; tidal volume 2.5–3 ml). The body temperature was kept at 35–37°C with an infrared heating lamp. Pithing was performed as described by Shipley and Tilden. Blood pressure was recorded for 15 minutes after the operation, after which renin was infused for 90 minutes.

Estimation of the Plasma Renin Activity

Blood was collected from the neck for 30 seconds immediately after decapitation; plastic tubes were used that contained 10 mg EDTA dissolved in 0.2 ml 0.9% NaCl. The blood samples were immediately placed on ice, and the plasma was stored at −20°C.
Plasma renin activity was measured according to the method of Haber et al., using a radioimmunoassay for angiotensin I. Plasma renin activity was calculated as the amount of angiotensin I generated from endogenous substrate per ml plasma during incubation of the sample at pH 6.5 for 1 hour at 37°C.

Statistical Analyses

The results were expressed as mean ± SEM. The significance of differences between two groups was determined with Student's t test. Regression analysis was applied to the data from the dose-response curves. A probability level of 0.05 was the criterion of significance.

Results

Experiment 1

The mean blood pressure of renal hypertensive rats had decreased to a normotensive level within 24 hours after removal of the clip (106 ± 5 mm Hg, compared with 107 ± 4 mm Hg for sham-operated control rats US-NS, fig. 1). Reapplication of the clip to the unclipped renal artery was followed by a rise of blood pressure to hypertensive levels within 1 hour (165 ± 5 mm Hg, compared with 169 ± 9 mm Hg for sham-operated renal hypertensive rats (UL-HS). Application of the clip to the contralateral renal artery in unclipped rats did not induce a significant blood pressure rise (113 ± 3 mm Hg, compared to 106 ± 5 mm Hg for sham-operated unclipped rats, UR-US). Application of the clip to the left or right renal artery in control rats induced a moderate blood pressure rise (left: 134 ± 3 mm Hg; right: 129 ± 3 mm Hg, compared with 107 ± 4 mm Hg for sham-operated control rats NL-NR-NS). The mean blood pressure of the different groups did not change significantly during the second hour of the observation period (fig. 1, dotted lines). From previous experiments in which the blood pressure was measured for 24 hours, we knew that the blood pressure reached maximal levels within 2 hours after reapplication of the clip (ten Berg and de Jong, unpublished data).

Plasma renin activity showed a pattern similar to that of the blood pressure levels in the various groups (fig. 1). Following removal of the clip, plasma renin activity decreased to the level seen in sham-operated normotensive control rats, but it returned to the level in sham-operated hypertensive rats when the clip was reapplied. Application of a clip to the contralateral (right) renal artery of unclipped rats resulted in a level similar to that in sham-operated normotensive control rats or sham-operated normotensive unclipped rats. In rats clipped for the first time, plasma renin activity increased to the same level as in reclipped rats; the latter showed a much larger rise in blood pressure.

Experiment 2

As shown in figure 2, the blood pressure of normotensive control rats and of normotensive unclipped rats (renal hypertensive rats in which the renal artery clip had been removed 24 hours before) did not differ during an infusion with saline (at the end of the 90 min infusion, the levels were 112 ± 3 and 116 ± 4 mm Hg respectively) (NV-UV). There was a significant difference in blood pressure between normotensive control rats, renal hypertensive rats, and unclipped rats (rats in which the clip had been removed 24 hr previously). The bars express the mean blood pressure determined 1 hour after the operation. The dotted lines express the mean blood pressure determined 2 hours after the operation. HS = Hypertensive-Sham (renal hypertensive rats that were sham-operated, n = 8); US = Unclip-Sham (unclipped rats that were sham-operated, n = 7); UL = Unclip-Left reclip (unclipped rats that received a clip on the unclipped (left) renal artery, n = 10); UR = Unclip-Right reclip (unclipped rats that received a clip on the contralateral (right) renal artery, n = 8); NS = Normal-Sham (normotensive rats that were sham-operated, n = 7); NL = Normal-Left clip (normotensive rats that received a clip on the left renal artery, n = 8); NR = Normal-Right clip (normotensive rats that received a clip on the right renal artery, n = 8).

As shown in figure 2, the blood pressure of normotensive control rats and of normotensive unclipped rats (renal hypertensive rats in which the renal artery
INCREASED REACTIVITY IN HYPERTENSIVE RATS/ten Berg and de Jong

respectively (NRe-URe). The difference in mean blood pressure between control and unclipped rats was nearly the same (Δ 28 and Δ 29 mm Hg respectively) 2 hours after the application of a clip to the left renal artery or at the end of the infusion with renin (2 hours after the operation). There was no difference in heart rate between control and unclipped rats in the case of sham application of a clip or infusion with saline. There was, however, a marked difference in all groups of rats in which a rise of blood pressure had been induced (fig. 2 upper panels); only the control rats showed pronounced bradycardia.

Infusion with angiotensin produced differences in blood pressure and heart rate similar to those caused by renin (NA-UA). The difference in mean blood pressure at the end of the 90-minute infusion of saline and of renin was enhanced in unclipped rats (Δ 33 and Δ 58 mm Hg respectively for control and unclipped rats) (fig. 2 lower panels). Blood pressure responses to the infusion of saline and renin were also assessed in renal hypertensive rats, which were sham-unclipped. The difference at the end of the infusions was attenuated in renal hypertensive rats (Δ 18 mm Hg).

Experiment 3

The relationship between the change in blood pressure and the bolus dose of angiotensin II (i.v.) in normotensive control rats and normotensive unclipped rats is shown in figure 3. The regression line for control rats was \(y = 28 \log x + 7 \) and that for unclipped rats, \(y = 39 \log x - 3 \). The difference between the slopes was small but significant \((p < 0.005) \), indicating an increase in responsiveness of the unclipped rats.

The pressor response to the 10-minute infusions with angiotensin II did not differ between control and unclipped rats, but the decrease of blood pressure after infusion termination did differ significantly \((p < 0.01) \) for doses of 90 and 270 ng/kg/min (fig. 4). Infusions with angiotensin II were followed by infusions with norepinephrine. There was a similar difference \((p < 0.01) \) in the blood pressure decrease of control and unclipped rats after the termination of the infusions with norepinephrine, for the highest dose (fig. 4). Infusions with angiotensin II were given in the same way to the same animals 24 hours later (i.e., 48 hr after the removal of the clip), and a similar difference in blood pressure decrease \((p < 0.05) \) was observed between control and unclipped rats (-44 ± 5 and -30 ± 4 mm Hg decrease respectively) at 2.5 min after a dose of 270 ng/kg/min.

The blood pressure increase and heart rate change during the 90-minute infusions with various doses of renin were significantly different for the two groups (fig. 5). The lowest dose of renin resulted in the greatest difference in blood pressure increase between unclipped and control rats (166 – 138 = Δ 28 mm Hg, at 45 min). This difference was similar to that observed after application of the clip (168 – 140 = Δ 28 mm Hg). The plasma renin activity in control and unclipped rats did not differ significantly at the end of the renin infusions (table 1). The lowest dose of renin

![Figure 2](http://hyper.ahajournals.org/)

Figure 2. Heart rate (upper panels) and mean blood pressure (lower panels) of control rats (N) and unclipped rats (U). On the left side is shown the mean blood pressure and heart rate of four groups in Experiment 1: NS (Normal-Sham); US (Unclip-Sham); NL (Normal-left clip); UL (Unclip-Left recip). On the right side is shown the mean blood pressure and heart rate determined at the end of an infusion with vehicle: NV (Normal-Vehicle) and UV (Unclip-Vehicle); renin (6.25 × 10^4 GUs/kg/min); NRe (Normal-Renin) and URe (Unclip-Renin); or angiotensin II (270 ng/kg/min): NA (Normal-Angiotensin) and UA (Unclip-Angiotensin). Infusions were started 30 minutes after sham operation and continued for 90 minutes. Thus, the blood pressure and heart rate values presented in fig. 2 are all determined 2 hours after an operation. Data are mean values ± SEM of 9 to 13 rats.
FIGURE 3. Increase in mean blood pressure after intravenous injections with angiotensin II. Closed circles = normotensive unclipped rats (renal hypertensive rats, in which the clip was removed 24 hours previously). Open triangles = normotensive control rats. Data are mean values ± SEM (vertical lines) for 11 rats in each group. The lines express the dose-response curves: $y = 39 \log x - 3$, and $y = 28 \log x + 7$ respectively for unclipped and control rats. Difference in slope of both curves was significant ($p < 0.005$).

FIGURE 4. Change in mean blood pressure during the intravenous administration of angiotensin II (upper panels) and norepinephrine (bottom panels) for 10 minutes. The stippled horizontal bars indicate the time of the infusions with angiotensin or norepinephrine. These infusions were followed by saline infusions. Closed circles = normotensive unclipped rats (renal hypertensive rats, in which the clip had been removed 24 hours previously). Open triangles = normotensive control rats. Data are mean values ± SEM (vertical lines) for 11 rats in each group.
Figure 5. Mean blood pressure (left side) and heart rate (right side) during infusions with renin for 90 minutes. Renin was given in three different doses to control rats and to unclipped rats (renal hypertensive rats in which the clip was removed 24 hr previously). Each dose was given to different rats. Closed circles = unclipped rats; open circles = control rats. Data are mean values from six to nine rats. Level of significance between control and unclipped rats: x = p < .005; xx = p < .01; xxx = p < .001.

Table 1. Plasma Renin Activity (AI ng/ml/hr) in Peripheral Blood

<table>
<thead>
<tr>
<th>Application of clip to left renal artery</th>
<th>Control rats</th>
<th>Unclipped rats</th>
</tr>
</thead>
<tbody>
<tr>
<td>68 ± 8</td>
<td>140 ± 4</td>
<td>168 ± 6</td>
</tr>
<tr>
<td>14 ± 2</td>
<td>104 ± 2</td>
<td>109 ± 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infusions with renin (GU/kg/min):</th>
<th>Plasma renin activity (AI ng/ml/hr)</th>
<th>Mean blood pressure (mm Hg)</th>
<th>Plasma renin activity (AI ng/ml/hr)</th>
<th>Mean blood pressure (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 10⁺</td>
<td>50 ± 4</td>
<td>133 ± 4</td>
<td>63 ± 8</td>
<td>154 ± 4</td>
</tr>
<tr>
<td>12.5 10⁺</td>
<td>107 ± 24</td>
<td>144 ± 7</td>
<td>123 ± 26</td>
<td>159 ± 5</td>
</tr>
<tr>
<td>31.3 10⁺</td>
<td>220 ± 13</td>
<td>137 ± 1</td>
<td>197 ± 18</td>
<td>148 ± 3</td>
</tr>
</tbody>
</table>

Plasma renin activity in peripheral blood of normotensive control rats and normotensive unclipped rats (renal hypertensive rats, in which the clip was removed 24 hours before). The blood was collected at the end of the infusions with renin (see fig. 5), or 2 hours after the application of the clip or sham operation (see fig. 1). Mean blood pressure just prior to the moment of blood collection are mentioned. Data are mean values ± SEM.
increased plasma renin activity to a level similar to
that measured 2 hours after application of the clip.
During the infusion with norepinephrine (fig. 6), the
differences in blood pressure and heart rate were
similar to those observed during the infusions with
renin.

Experiment 4
The enhanced response of unclipped rats to renin
was abolished by pithing (fig. 7). The pithing
procedure lowered the mean blood pressure to a
similar level in unclipped as in control rats (47 ± 4
and 53 ± 4 mm Hg respectively). To obtain a blood
pressure increase in pithed control rats (PN) similar to
that obtained in intact control rats (IN) (induced with
a dose of 5×10^4 GU/kg/min renin), a dose six times
higher was required. This higher dose of renin caused
a blood pressure rise in pithed unclipped rats (PU)
which was not significantly different from the increase
observed in pithed control rats (PN) (fig. 7). In the
pithed control and unclipped rats, no bradycardia was
observed during the infusion with renin.

Discussion
The blood pressure of renal hypertensive rats
decreased to normotensive levels within 24 hours after
removal of the renal artery clip; this is consistent with
previous reports.1-6 The blood pressure regulating
systems of these normotensive unclipped rats,
however, may still operate at a different level at that
time. The enhanced blood pressure rise following the
application of a clip to the unclipped renal artery
points to such an altered reactivity. The difference in
blood pressure rise between unclipped and control rats
over a 2-hour period following the application of a clip
was very similar to that reported by Skulan et al.4 The
enhanced response of unclipped rats to the application
of a renal artery clip could be caused by an ex-
aggerated secretion of pressor factors by the kidney
and/or altered reactivity of the cardiovascular system.
Plasma renin activity reached a similar level in un-
clipped and control rats after application of a clip, as
well as after infusions with renin. The difference in the
increase in blood pressure induced by infusing renin
into unclipped and into control rats was similar to the

![Figure 6. Heart rate (upper) and mean blood pressure (lower) during infusion with norepinephrine for 90 minutes. Norepinephrine was given in a dose of 1 µg/kg/min to control rats (open circles) and unclipped rats (closed circles). Data are mean from six and seven rats. Level of significance between control and unclipped rats: * = p < 0.05.](http://hyper.ahajournals.org/igo/applyPersistentUrl.ashx?source=ht&&tempid=526078)
INCREASED REACTIVITY IN HYPERTENSIVE RATS/ten Berg and de Jong

Figure 7. Change in mean blood pressure during a 90-minute infusion with renin (5 × 10⁻⁸ GU/kg/min) to intact, conscious (solid lines) unclipped rats (closed circles) and control rats (open circles). The mean blood pressure of these two groups are shown in fig. 5. A six-times-higher dose of renin was given to pithed (dotted lines) unclipped rats (closed circles) and control rats (open circles). Basal blood pressure levels at the beginning of the infusions were for: IU (Intact-Unclipped) 99 ± 4 mm Hg, n = 6; IN (Intact-Normal) 97 ± 3 mm Hg, n = 9; PU (Pithed-Unclipped) 47 ± 4 mm Hg, n = 7; and PN (Pithed-Normal) 53 ± 4 mm Hg, n = 7.

A slight but significant difference in the slope of the angiotensin II dose-response curves of unclipped and control rats was observed in the present study, indicating an enhanced reactivity of the cardiovascular system in unclipped rats. Infusing angiotensin II and norepinephrine for 10 minutes did not lead to a significant difference in pressor response between unclipped and control rats. It is likely that the highest dose was still too low to show a difference in reactivity, as was indicated by the occurrence of such a difference for the highest injected doses of angiotensin. After termination of the infusions, the return of blood pressure to baseline was delayed in the unclipped rats. The similarity of the delayed return after administration of angiotensin and norepinephrine does not point to an important role of a decreased metabolism of angiotensin in such a delay.

It is supposed that the enhanced reactivity of the cardiovascular system of hypertensive rats is caused by an increased reactivity of the peripheral vessels to constrictor stimuli. This could be an enhanced contractility or enhanced sensitivity of the smooth muscles. Difference in threshold between unclipped and normal rats was not observed in the present study, which would point to an enhanced contractility. However, as destruction of the spinal cord abolished
the enhanced pressor response of unclipped rats to renin, it is unlikely that only an enhanced reactivity of the peripheral vessels was involved. The absence of reflex bradycardia during the blood pressure increase in unclipped rats and the retarded normalization of blood pressure after termination of the 10-minute infusions in unclipped rats point to altered autonomic reflexes. It is generally accepted that the baroreceptor reflex is reset within 1 to 2 days after the onset of hypertension.22 Liard et al.22 reported that elimination of the baroreceptor reflex in dogs caused an enhanced blood pressure rise after narrowing the renal artery. The difference in blood pressure rise between denervated and control dogs, after narrowing the renal artery, was of the same order as that found between unclipped and control rats in our study. It is possible that the baroreceptor reflex is still reset 24 hours after the removal of the clip, notwithstanding the normalization of the blood pressure. Salgado and Krieger,23 however, showed that baroreceptor function was normalized within 6 hours after the removal of the clip in chronic renal hypertensive rats.

It is suggested that an increase in the reactivity of the cardiovascular system, as is observed in unclipped rats in our study, gradually develops during the course of renal hypertension. This course can be divided into several stages.24 During the initial phase, hypertension is renin-dependent, but in the later stages a discrepancy has been reported between the level of the blood pressure and the activity of the renin angiotensin system. The discrepancy perhaps can be explained by an altered reactivity of the cardiovascular system to angiotensin.5, 25-27 It is tempting to speculate that such an enhanced reactivity to angiotensin could be induced by angiotensin itself during the early phase of the development of renal hypertension; the term “autopotentiation” has been suggested to describe this effect.28 Several investigators showed that systemic arterial pressure rose progressively over a period of 1 day to 3 weeks to reach a plateau during the chronic i.v. administration of a subpressor or mild pressor dose of angiotensin.29-32 Recently, this was confirmed by Slack et al.,33 who reported that the blood pressure of dogs increased gradually, reaching a plateau within 2 weeks, during the chronic infusion of angiotensin II given in a subpressor dose. An enhanced blood pressure response to this peptide developed in the course of the administration of angiotensin II.33

In conclusion, our study shows that the removal of the renal artery clip in two-kidney, one clip hypertensive rats, which is followed by rapid normalization of the blood pressure, unmask a hyperreactivity of the cardiovascular system. The data point to a role of renin secretion and altered autonomic reflexes in the enhanced blood pressure response.

References
25. Bohr DF: Angiotensin in vascular smooth muscle. In Angioten-
Mechanism of enhanced blood pressure rise after reclipping following removal of a renal artery clip in rats.
R ten Berg and W de Jong

Hypertension. 1980;2:4-13
doi: 10.1161/01.HYP.2.1.4

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1980 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/2/1/4

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Hypertension_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Hypertension_ is online at:
http://hyper.ahajournals.org/subscriptions/