Kallikrein and Renin in the Membrane Fractions of the Rat Kidney

KAZUTAKA NISHIMURA, M.D., PATRICK WARD, PH.D., AND ERVIN G. ERDÖS, M.D.

SUMMARY Plasma membrane (PM) and endoplasmic reticulum (ER) enriched fractions were isolated from the homogenized rat kidney. Transmission electron micrographs of PM showed empty vesicles but no granules present in the fraction. Kallikrein activity was detected in the homogenate, microsomal, and PM and ER fractions; it was most enriched in PM fraction. PM-kallikrein released a kinin, cleaved the peptide substrate, S-2266, and a radiolabeled arginine ester. The ester was also hydrolyzed by renal enzymes other than kallikrein. PM-kallikrein was activated by Triton X-100, phospholipase A, lysolecithin, and by a peptide, melittin. Melittin (2 μM) was most potent; it increased the activity to 750%. Solubilized PM and ER kallikrein were inhibited by antibody to rat urinary kallikrein, but membrane-bound kallikrein was more resistant to inhibition. The Km of S-2266 was higher with renal than with urinary kallikrein. The PM and ER fractions also contained renin. Renin activity was enhanced 30-fold or more by activators of kallikrein, e.g., by phospholipase A, lysolecithin, and melittin. Low sodium diet increased the activity of kallikrein in the homogenate and in the membrane fraction. This diet increased the activity of renin in the homogenate but not in the membrane fraction. It is suggested that prekallikrein is on PM and is activated prior to release from the membrane. Membrane-bound renin may be a form of renin retained in the kidney.

(Hypertension 2: 538-545, 1980)

KEY WORDS • plasma membrane • endoplasmic reticulum • membrane-bound enzymes • rabbit uterus • melittin • enzyme activation • lysolecithin • phospholipase A • microsomes • aprotinin • Na⁺ diet

ALTHOUGH active kallikrein is excreted in urine, relatively little of this hypotensive enzyme can be detected in the kidney. Much of renal kallikrein is bound to plasma membrane, very likely in the cells of the distal tubules. To explain the discrepancy in the activity of renal and urinary kallikrein, we studied the mode of activation of bound kallikrein. After separation of membrane fractions from homogenized kidney, we found that these fractions contain renin activity in addition to kallikrein. We also found that both membrane-bound kallikrein and renin are activated by detergent, phospholipase A₂, lysolecithin, and a basic polypeptide, melittin.

Materials and Methods

Dextran T 70 was purchased from Pharmacia Fine Chemical, Uppsala, Sweden; α-N-tosyl-L-arginine (α-N-TAMe) from Biochemical and Nuclear Corporation, Burbank, California; α-N-tosyl-L-arginine methylester (TAME) from Sigma Chemical Company, St. Louis, Missouri; and D-Val-Leu-Arg-p-nitroanilide (S-2266) from Kabi Diagnostica, Stockholm, Sweden. Venom and pancreatic phospholipase A₂ were purchased from Boehringer Mannheim, Germany. Phenylmethylsulfonylfluoride (PMSF), melittin, lecithin, arachidonic acid, and soybean trypsin inhibitor were from Sigma Chemical Co., St. Louis, Missouri. Lysolecithin was purchased from Supelco, Inc., Bellefonte, Pennsylvania. Aprotinin (trasyloc) was obtained from Professor G. Haberland Bayer AG, Wuppertal-Elberfeld, Germany. Antisera to rat renal kallikrein and bradykinin were donated by Dr. O. A. Carretero, Detroit, Michigan, and Dr. H. Margolius of Charleston, South Carolina. Other chemicals were obtained from Bio-Rad Laboratories, Richmond, California, and Eastman Kodak Company, Rochester, New York. Pregnant rabbit uteri were purchased from Pel-Freez Inc., Rogers, Arizona.

Fractionation

Male Sprague-Dawley rats (200–250 g) were killed by decapitation, and 20 g of renal cortex, dissected from eight to 10 rats, was pooled and minced. Renal tissue was suspended in 200 ml of 10 mM Tris-HCl buffer, pH 7.4, containing 0.25 M sucrose, and homogenized in a Dounce homogenizer. Then 2 ml of 0.1 M EDTA was added, and the homogenate cen-
trifuged at 10,000 g for 15 minutes. The supernatant was then centrifuged at 30,000 g for 15 minutes. The supernatant containing microsomal particles was centrifuged at 100,000 g for 60 minutes in a Beckman L5-65 ultracentrifuge. The microsomal pellet was suspended in 10 mM Tris-HCl buffer, pH 8.6, and recentrifuged at the speed above, then the pellet was resuspended in 1 mM Tris-HCl buffer, pH 8.6, and dialyzed against the same buffer for 2 hours. The microsomal fraction was separated into plasma membrane (PM) and endoplasmic reticulum (ER) enriched subfractions.1, 7 The washed microsomal fraction was carefully layered on 24 ml of 15% w/w dextran T 70 in 1 mM MgSO4 and 1 mM Tris-HCl, pH 8.6, and centrifuged in a SW-27 swinging bucket rotor at 25,000 rpm for 16 hours in the ultracentrifuge. The PM-containing fraction was concentrated at the interface and the pellet was rich in ER. Both fractions were resuspended in 10 mM Tris-HCl buffer, pH 8.6, containing 10 mM MgSO4, and centrifuged at 100,000 g for 60 minutes. The pellets were suspended in 10 mM Tris-HCl buffer, pH 7.4, containing 0.25 sucrose. The samples were kept at -70°C until used. There was no difference in kallikrein activity between the fresh samples and the samples stored frozen. Freshly collected fractions were used for the assay of bound renin. Pregnant rabbit uteri were fractionated the same way as rat kidney samples stored frozen. Freshly collected fractions were used for the assay of bound renin. Pregnant rabbit uteri were fractionated the same way as rat kidney

Low Na+ Diet

Rats were kept on low (10 mEq Na/kg) or high (150 mEq Na/kg plus saline) sodium diet in groups of six in metabolic cages according to Campbell et al.4 The animals on the low sodium diet received a 10 mg/kg dose of furosemide on the first and second day.

Enzyme Assays

Kallikrein activity was assayed initially with 3H-TAMe, but in the majority of studies using isolated membrane fractions, S-2266 was the substrate. The hydrolysis of S-2266 was determined in a Cary 118 or Cary 15 recording spectrophotometer either by continuously recording the increase in absorption at 405 nm or by taking aliquots from incubation mixture at regular time intervals.16 The reaction mixture contained enzyme (50 /ul), 0.1 M Hepes buffer, pH 9.1 (700 /ul), and 1 mM S-2266 (50 /ul) incubated for 15 minutes at 37°C. With turbid solutions, the following technique was used: the reaction was stopped with 20% (w/w) perchloric acid (300 /ul) and centrifuged at 3,000 g for 10 minutes. Then 0.2% (w/v) sodium nitrite (500 /ul) was added to the supernatant fluid (500 /ul). The solution was kept at 4°C for 10 minutes to diazotize, and 0.5% (w/v) ammonium sulphamate (500 /ul) was added to destroy the excess nitrite; subsequently, 0.05% naphthylethylenediamine dissolved in methanol (1 ml) was added. After the solution was kept at 37°C in the dark for 30 minutes, the absorbance was measured at the wavelength of 546 nm.11 Activity was expressed as cpm/min/ml of 3H-methanol product formed when 3H-TAMe was used as a substrate. Activity was also expressed as nmole of p-nitroanilide product formed per minute when S-2266 was hydrolyzed. Glucose 6-phosphatase was assayed in the presence of 4 mM EDTA and 2 mM KF.15 ATPase was determined by the method of Post and Sen.14 Phosphate released was determined by the method of Fiske and SubbaRow.18 Alkaline phosphatase was assayed according to Linhardt and Walter.18 The Km was determined by plotting 1/v against 1/s. The kallikrein activity was assayed using S-2266 as a substrate. Protein concentration was measured by the method of Lowry et al., using bovine serum albumin as a standard.13

Polyacrylamide Disc Gel Electrophoresis

Disc gel electrophoresis was performed in 7% acrylamide gel at pH 8.6 with a current of 3 mA per tube for 2 hours. The gels were cut to 2 mm width segments, and proteins were eluted from gels by adding 100 /ul of 10 mM Tris-HCl, pH 8.6. The kallikrein activities were measured with 3H-TAMe and S-2266 substrates. The recovery of the enzyme from the gel was about 70%.

Activation of Kallikrein

Aliquots of PM, ER, and urine were incubated with activators at 4°C for 30 minutes. In addition, melittin was also directly added to the cell of the spectrophotometer containing the substrate and enzyme without preincubation. When aliquots of PM, ER, and urine were incubated with venom and pancreas phospholipase A2, the reaction mixture contained 100 /ul of sample in 10 mM Tris-HCl, pH 7.4, 0.25 M sucrose and 10 /ul of either pancreatic (60 U) or venom (2 U) phospholipase A2, preincubated for 1 hour at room temperature. Venom phospholipase A2 cleaved 3H-TAMe even in the absence of kallikrein. This blank value was subtracted from the experimental data. The concentration of Triton X-100 was 1% in the incubation mixture.

Extraction of Activator

The ER fraction (500 /ul) was incubated with venom phospholipase A2 for 1 hour at room temperature. Then 500 /ul of chloroform was added to the reaction mixture, shaken vigorously, and centrifuged for 2 minutes at 700 g. After the chloroform layer was evaporated by boiling, 200 /ul of 50% methanol was added. The reaction mixture, 80 /ul of sample and 80 /ul of methanol extract, was preincubated for 30 minutes at 4°C. The control mixture contained methanol only, which had no effect on the enzyme.
Radioimmunoassay

Renin activity was assayed in 0.24 M Tris EDTA buffer at pH 7.5 according to Poulsen and Jørgensen19 using nephrectomized rat serum as source of substrate. The activation of renin by melittin was done in 0.1 M Hepes buffer, pH 9.1. The kinin released by kallikrein from heated dog kininogen was determined by radioimmunoassay. The incubation mixture contained in 0.1 M Tris at pH 7.4, kininase inhibitors SQ 14,225, EDTA and o-phenanthroline.18 Kinins were adsorbed and separated from the samples on Amberlite IRC 50 resin20 prior to the assay.

Effect of Lipids

Lysolecithin, lecithin, and arachidonic acid were dissolved in 50% methanol. The PM and ER fractions were incubated with lysolecithin, lecithin, or arachidonic acid for 30 minutes at 4°C, and the solvent was added to the control reaction mixture.

Results

Separation of Particles

The microsomal fraction of crude homogenate of rat kidney obtained in the ultracentrifuge was further separated to PM- and ER-enriched fractions. The separation procedure included osmotic shock by washing the membrane preparations twice with hypotonic solutions. Table 1 shows that the marker enzymes assayed were enriched in the ER (glucose-6-phosphatase) and in the PM (alkaline phosphatase, ATP-ases) fractions.

Transmission EM

Electron micrographs of PM-enriched fraction revealed that the specimen consisted largely of (membrane-lined) round and tubular-shaped vesicles. There were no identifiable ribosomes, mitochondria, dense microbodies, or solid granules present. Most of the vesicles seemed to be empty (fig. 1).

Fractionation of Kallikrein

The separation of kallikrein activity from the homogenized rat kidney is shown in table 2. The activity of kallikrein with S-2266 and 3H-TAMe substrates did not increase in parallel manner. For example, the activity in the microsomes was enriched 2.6-fold with respect to S-2266, but only 1.3-fold when 3H-TAMe was the substrate. This indicates that the crude homogenate contains one or more enzymes that cleave 3H-TAMe, but are not identical with kallikrein.

Activation of Bound Kallikrein

Pancreatic and venom phospholipase A\textsubscript{2} and the detergent Triton X-100 enhanced the kallikrein activity of the fractions. Taking the control activity as 100% Triton increased the activity more with S-2266 than with 3H-TAMe (369% vs 190%), while venom phospholipase A\textsubscript{2} enhanced 3H-TAMe esterase activity more (550% vs 336%). Hydrolysis of S-2266 was completely inhibited by aprotinin (Trasylol; 10 U/ml), while the increased 3H-TAMe hydrolysis after incubation with venom phospholipase A\textsubscript{2} was inhibited only 30%. This indicates that rat kidney membrane fractions contain a "silent" 3H-TAMe esterase, which is unmasked during activation of bound kallikrein. In control experiments, rat urinary kallikrein was not activated by either one of the agents that enhanced activity of bound kallikrein.

To determine whether the increase in activity after incubation with phospholipase A\textsubscript{2} was due to direct action of the enzyme on the membrane-bound kallikrein or to a product released by the enzyme, we incubated the ER fraction with venom phospholipase A\textsubscript{2} and extracted the incubation mixture with chloroform. Chloroform was subsequently evaporated, and the residue was dissolved in 50% methanol. An equivalent amount of methanol was used in control samples. The chloroform extract enhanced S-2266 hydrolysis to 229%, indicating that a membrane component released by phospholipase may be responsible for the activation. Following this observation we tested various lipids as activators of PM-kallikrein. Lysolecithin was the most active compound in this series; it activated PM-kallikrein sevenfold at a 1 mM concentration. Arachidonic acid and lecithin were active only in a concentration of an order of magnitude

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Transmission electron micrograph of PM enriched fraction.}
\end{figure}
higher. Prostaglandin E\(_2\) did not activate even when used in a high concentration (100 \(\mu\)g/ml).

The results of the radioimmunoassay of kinin released by activated PM-kallikrein resemble those obtained in experiments done with S-2266 (table 3). Thus lysolecithin increased PM-kallikrein activity sevenfold, pancreatic phospholipase A\(_2\) was equally active, and venom phospholipase A\(_2\) and Triton X-100 (1%) activated fivefold, as determined by radioimmunoassay.

The activity of PM-kallikrein, however, was enhanced more by the peptide melittin than by the other agents tested. Melittin is a 26-amino acid peptide from bee venom; it was active at a molar concentration three orders of magnitude lower than that of lysolecithin. Maximum activity (750%) was obtained at about 2 \(\mu\)M concentration. At 0.3 \(\mu\)M concentration it doubled the rate of kallikrein activity; melittin also increased the kallikrein activity in the washed microsomal fraction; centrifugation of the fraction at 100000 \(\times\) g, however, showed that it increased activity in both the precipitate and final supernatant (fig. 2). This is taken as indication that melittin, in addition to solubilizing kallikrein, activates a membrane-bound prekallikrein or a partially inactive kallikrein.

In control studies, activators of PM-kallikrein did not affect urinary kallikrein.

Electrophoresis of Kallikrein

Plasma membrane kallikrein was separated to three activity peaks with RF values of 0.3, 0.65, and 1.0, in preparative polyacrylamide gel electrophoresis at pH 8.6 (fig. 3). However, the TAME esterase activity in the fractions did not parallel the peptidase activity. The ratio of activities (\(^3\)H-TAME vs S-2266) in the fastest migrating peak was higher than in the two slower migrating ones. Electrophoresis of rat urinary kallikrein yielded only the two faster migrating peaks.

Reaction with Antibody

Antiserum to rat urinary kallikrein inhibited PM-kallikrein, ER-kallikrein, and rat urinary kallikrein similarly, provided that the two membrane-bound kallikreins were solubilized with Triton X-100. The antiserum reduced the activity of kallikrein by half at 1:1024 to 2048 dilution. In contrast, PM- or ER-kallikrein bound to membrane was inhibited by antiserum 50% only at a dilution of 1:128 (fig. 4).
Properties of Renal Kallikrein

The Km of S-2266 was significantly higher with renal than with urinary kallikrein. The Km values were 70 μM (±0.9), 65 μM (±1.1), and 44 μM (±0.4) with kallikrein from the microsomal, ER, and PM fractions respectively. The Km of S-2266 with urinary kallikrein was 23 μM (±0.3). The differences between the Km values of renal kallikrein and urinary kallikrein were statistically significant (p < 0.05).

The inhibition of kallikrein in the microsomal, PM, and ER fractions and in the rat urine was similar. Aprotinin (10 KIU) inhibited the enzyme completely, but soybean trypsin inhibitor (25 μg/ml) was inactive. The inhibitor of proteases, p-phenylmethylsulfonylfluoride, inhibited all kallikrein preparations 77%–80% at 3 mM concentration.

Activation of Renin

Renin activity was present in the microsomal fraction as well as in the membrane fractions, which were washed repeatedly with hypotonic buffers. The specific activity of renin was 33.5 (±2) ng of angiotensin I released in 1 hour per mg protein (table 4). The corresponding number for the ER fraction was 12.8. This low activity represented less than 3% of the total obtained after activation of the PM fraction. PM-bound renin was activated by the same agents as PM-kallikrein. Thus, Triton X-100, phospholipase A₂, and lyssolecithin activated about 30- to 50-fold. Melittin also enhanced renin activity 30-fold although only at a concentration 5-10 times higher than with kallikrein. The relative rate of activation of renin in the ER fraction was similar but the specific activity of ER-renin was about one-third that of PM-renin.

Rabbit Uterus

When the source of renin was the homogenized pregnant rabbit uterus, the results were almost identical to those obtained with rat kidney. The PM- and ER-membrane enriched fractions from the rabbit uterus contained renin. The highest activity after adding Triton X-100 to the PM fraction was 1.8 μg of angiotensin I released in 1 hour by 1 mg protein. As with kidney PM, renin, pancreatic and venom phospholipase A₂ also activated the enzyme. We could not detect any kallikrein activity in the pregnant rabbit uterus.

Effect of Low Salt Diet

A brief (5 days) low salt diet doubled the kallikrein activity in the renal homogenate (fig. 5). Low sodium diet also increased the specific activity of membrane-bound kallikrein the same way. In contrast, high

Table 3. Activation of PM-Bound Kallikrein Determined by RIA of Kinin Released from Dog Kininogen

<table>
<thead>
<tr>
<th>Activator</th>
<th>Activity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100</td>
</tr>
<tr>
<td>Triton X-100 (1%)</td>
<td>510</td>
</tr>
<tr>
<td>Pancreatic phospholipase A₁</td>
<td>693</td>
</tr>
<tr>
<td>Venom phospholipase A₂</td>
<td>505</td>
</tr>
<tr>
<td>Lyssolecithin (1 mM)</td>
<td>681</td>
</tr>
</tbody>
</table>

*ₙ = 3.
sodium diet did not change kallikrein activity significantly over the control. In the same animals, the activity of renin increased significantly in the homogenized kidney of rats kept on low sodium diet (fig. 6). The renin activity in the control was $5.12 \pm 0.24 \mu g$ angiotensin I liberated in 1 hour by 1 mg protein. That increased to $8.64 \pm 0.24 \mu g$ in the animals kept on low sodium. The activity of membrane-bound renin in the washed microsomal fraction did not increase significantly over the control; it was 1.10 ± 0.09 vs 1.27 ± 0.13, as indicated in figure 6.

Discussion

These experiments expand our previous studies, which showed that rat kidney contains kallikrein and renin bound to membranes. The membrane preparations probably also contain a bound prekallikrein. Kallikrein is also present in the ER fraction of the homogenized rat kidney, as indicated in studies using several fractionation techniques. This suggests that kallikrein is synthesized in ER. The experiments of Heidrich (personal communication) indicate that after its release from ER, kallikrein appears on the inside of lysosomal membranes, at least in the rabbit kidney. These lysosomes may fuse with PM to form PM-kallikrein. The experiments of Chao and Margolius support this concept, since they show that kallikrein can be divided in suspended kidney cells with a detergent or phospholipase. Within the kidney, kallikrein was found in the distal tubules and on the luminal surface of the tubules. The latter studies were done with fluorescent antibody.
We found that PM-kallikrein is released by detergent and phospholipase A₂. This activation of kallikrein probably does not involve prostaglandin synthesis, but rather the release of lyssolecithin by phospholipase A₂, since lyssolecithin increased the activity of PM-kallikrein approximately sixfold. Because bradykinin is reported to activate phospholipase in the kidney, renal kinins may be feedback activators of renal kallikrein. In addition, in one strain of hypertensive rats, renal phospholipase A₂ and kallikrein activity are parallel.

Of the activators tested, melittin is by far the most potent one. Melittin is a polypeptide of about 2800 m.w. that contains basic and hydrophobic amino acids. It interacts with membranes and activates membrane phospholipase in low concentration. Melittin releases histamine from mast cells, and angiotensin I converting enzyme (kininase II) from the perfused lung. Although the natural product may be contaminated with phospholipase, it was ascertained that the activity of the preparation is due to its melittin content. Synthetic melittin (provided by L. Levine of Brandeis University) gave identical results as the natural product. Melittin activated PM-kallikrein about eightfold at 2 μM and about twofold at 0.3 μM concentration. As with trypsin, this activation was only partially due to solubilization of kallikrein because bound kallikrein activity also increased. This indicates that melittin activates a PM-bound prekallikrein. Inhibition of solubilized kallikrein and urinary kallikrein by antiserum to urinary kallikrein by antiserum to urinary kallikrein gave identical results. PM- and ER-kallikrein were inhibited only at higher concentration of the antiserum prior to adding detergent. This resistance of bound kallikrein to antibody binding may explain some of the difficulties encountered when attempting to localize tissue kallikrein with immunofluorescence techniques.

Although the experiments suggest that PM-membrane fractions contain a prekallikrein that becomes enzymatically and antigenically more active after its release from the membrane, there are some differences between rat urinary and soluble renal kallikrein since the Km of S-2266 is significantly lower with urinary kallikrein than with PM-kallikrein. Thus, at a low substrate concentration the apparent activity of urinary kallikrein may be higher than that of the kidney kallikrein. In addition, in preparative electrophoresis, solubilized PM-kallikrein has three peaks of activities while urinary kallikrein has only two.

S-2266 seems to be a more appropriate substrate for renal kallikrein than H-TAME. Radioimmunoassay of kinin released by kallikrein resembled the results obtained with S-2266. On the other hand, H-TAME seemed to be cleaved by other enzymes not inhibited by aprotinin. For example, after activation by phospholipase, an additional "silent" TAME-esterase becomes apparent in the PM and ER fraction, which is not identical with kallikrein.

In addition to kallikrein, the rat kidney contained renin bound to membrane fragments. It was found in our laboratory previously that renin can be induced in the microsomal-ribosomal fraction of the submaxillary gland of the mice, and that kidney contains a membrane bound form of renin.

These experiments show that the microsomal fraction and subsequently separated PM- and ER-enriched fractions contained renin. These fractions were washed repeatedly with hypotonic solution. Transmission electron micrograph revealed no granules or trapped soluble material in the membrane vesicles. Although ER represents a larger surface than PM, the specific activity of ER-renin was lower than that of PM-renin, just as we found with kallikrein. Thus, a nonspecific adsorption of renin by membrane fragments during homogenization is unlikely.

The simultaneous occurrence of renin and kallikrein in the same membrane fractions is of interest, especially since kallikrein is reported to be an activator of renin. Bound renin and kallikrein are activated by the same agents, including Triton X-100 phospholipase A₂, lyssolecithin, and melittin. However, many of the properties of bound renin and kallikrein differ. For example, PM-renin has less than 3% of the activity of the fully activated preparation. There is no evidence that bound renin is prorenin. In pilot studies, trypsin and plasmin did not activate PM-renin. After freezing–thawing, PM-renin has the same molecular weight as soluble renin, about 40,000 (C. Wilson, to be published). Freezing releases renin but not kallikrein. Low sodium diet increases PM-kallikrein activity but not that of PM-renin. Melittin activates PM-renin at 10 times higher concentration than PM-kallikrein. Finally, PM fractions of pregnant rabbit uterus contain renin, but we detected no kallikrein activity there. Thus, kallikrein is very likely synthesized by distal tubular epithelial cells. Prekallikrein on the plasma membrane is activated and solubilized by various stimuli. It may enter urine and maybe also the circulation. The PM-membrane fractions also have renin activity. This renin may be synthesized by cells outside the juxtaglomerular apparatus or may be held on the cell surface by attachment to a receptor. In contrast to the renin released in the circulation from granules, this form of renin may be a source of the enzyme functioning in the kidney.

The experiments, where animals were kept on low sodium diet, support the concept of Margolius and others that aldosterone enhances kallikrein excretion, possibly by inducing it in the kidney. In addition to the well-known increase in kallikrein excretion after aldosterone administration or low sodium diet, the specific activity of PM-kallikrein increased in our experiments. Thus, renin can control the function of PM-kallikrein indirectly by the release of aldosterone.

Acknowledgments

The authors are grateful for the kind collaboration of Dr. R. Reynolds of the Department of Pathology, the assistance of K. Hammon, A. C. White, and D. S. Page, and the advice of Dr. A. Gosh of the Department of Pharmacology and Dr. Lawrence Levine of Brandeis University.
References

27. Shier WT: Activation of high levels of endogenous phospholipase A2 in cultured cells. Proc Natl Acad Sci 76: 195, 1979
Kallikrein and renin in the membrane fractions of the rat kidney.
K Nishimura, P Ward and E G Erdős

Hypertension. 1980;2:538-545
doi: 10.1161/01.HYP.2.4.538

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1980 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/2/4/538.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in
Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/