Reduced Hypotensive Action of Arachidonic Acid in the Spontaneously Hypertensive Rat

PETER LUKACSKO, PH.D., EDWARD J. MESSINA, PH.D., AND GABOR KALEY, PH.D.

SUMMARY Prostaglandins (PG) E₂ and I₁, are potent vasodepressor agents and their endogenous release may contribute to the regulation of blood pressure (BP). We investigated whether a decreased response to or a decreased capacity of the vasculature to synthesize vasodepressor PGs could contribute to the increased vascular resistance characteristic of hypertension. The change in mean arterial blood pressure (MAP) to intraaortic (i.a.) injection of PGE₂ and PGI₁ at 0.01, 0.1, 1.0, and 10.0 and of sodium nitroprusside (NaNP) at 0.1, 1.0 and 10.0 nmoles/100 g body weight (gbw) was measured in anesthetized, 30-week-old male rats of the spontaneously hypertensive (SHR), normotensive Wistar-Kyoto (WKY) and Wistar (W) strains. The percent decrease in MAP to equivalent doses of NaNP did not differ among the three strains of rats except at 1.0 n mole/100 gbw, a dose to which W rats showed a greater depressor response than either SHR or WKY rats. Similarly, no major differences were found among the strains in their response to the administration of PGI₁, except to a dose of 0.1 n mole/100 gbw to which both SHR and W rats responded with a greater percent decrease in MAP than WKY rats. In contrast, the percent decrease in MAP to PGE₂ was generally greater in SHR than WKY rats but was found not to differ between SHR and W rats at any dose.

The i.a. injection of arachidonic acid (AA), while causing dose-dependent percent decreases in MAP in all strains, produced significantly smaller hypotensive responses at doses of 10 and 100 nmoles/100 g bw in SHR as compared to WKY or W rats. At doses of 300 nmoles AA or greater, hypotensive responses did not differ significantly between SHR or WKY rats whereas the W rat exhibited percent reductions in MAP that were significantly larger than those obtained in the other two strains of rats. We conclude that SHRs do not have a reduced ability to respond to exogenous PGE₂, PGI₁, or NaNP; however, SHRs appear to have a decreased capacity to utilize AA for the synthesis of vasodepressor PGs.

KEY WORDS • hypotension • prostaglandins • arachidonic acid • indomethacin • sodium nitroprusside • spontaneous hypertension • rats

Prostaglandins (PGs), a group of biologically active substances, have potent vascular effects. Prostaglandin E₂ and the recently discovered prostacyclin (PGI₁) have been shown to be especially effective in producing a hypotensive response¹ when injected into the circulation of different species. Microscopic observation of microvascular beds has provided more direct evidence of the vasodilator effect of PGE₂² and PGI₁³ that may account for the reduction in blood pressure (BP) following their administration.

Studies using isolated vascular strips and microsomal fractions from blood vessels provide convincing evidence that arteries and veins have the ability to synthesize PGE₂⁴ and PGI₁⁵. Further-
decreased response to or a decreased capacity of blood vessels to synthesize vasodepressor PGs accounts for the increased vascular resistance characteristic of hypertensive states.17,18 Certain aspects of this hypothesis were examined by observing changes in systemic arterial BP in response to i.a. injection of PGE\textsubscript{2}, PGI\textsubscript{2}, and AA in spontaneously hypertensive and normotensive rats.

Methods

Three strains of adult male rats, ranging from 210 to 225 days of age, were used. The spontaneously hypertensive rats (SHR)19 and two groups of normotensive controls, Wistar-Kyoto (WKY) and Wistar (W) rats, were purchased from Charles-River Farms at 25 days of age and housed in our animal quarters.

Anesthesia was initially induced by means of sodium pentobarbital (50 mg/kg, i.p.) and maintained with subsequent injections (15 mg/kg, i.m.) as required. A carotid artery was cannulated with polyethylene tubing (PE 90) for the measurement of arterial BP by means of a Statham transducer coupled to a Beckman R 611 dinograph.

To study more directly the systemic effects of the agents to be tested and to avoid responses that could be caused by their differential degradation by the lungs, a catheter (PE 10) was introduced into the left femoral artery and advanced into the upper thoracic aorta for the purpose of retrograde injection.

After a minimum equilibration period of 30 minutes, some animals of each strain received bolus injections of PGE\textsubscript{2}, PGI\textsubscript{2}, and sodium nitroprusside (NaNP) while others received NaNP, AA, oleic, linolenic or di-homo-\gamma-linolenic acid, and indomethacin. Doses and order of administration of the PGs and NaNP were randomized in contrast to the fatty acids, which were tested starting with low doses.

All vasoactive compounds were administered to each animal at least twice, and the responses to a given dose were averaged. All agents, except indomethacin, were given in a total volume of 0.1 ml, and at least a 10-minute period of equilibration was allowed after recovery from each successive dose. The mean arterial blood pressure (MAP) immediately prior to injection was used to calculate the reduction in arterial BP.

Prostaglandins E\textsubscript{2} and I\textsubscript{2} were injected in doses of 0.01, 0.1, 1.0, and 10.0 nmoles/100 gbw (gbw). A stock solution of PGE\textsubscript{2} was prepared by dissolving 1.0 mg in 0.1 ml 95% ethanol and 0.9 ml of 2.0 mM Na\textsubscript{2}CO\textsubscript{3}. Prostaglandin I\textsubscript{2} was prepared fresh daily as a stock solution (1 mg/ml) by dissolving crystals of PGI\textsubscript{2} in 1 M TRIS (pH 9.6). Sodium nitroprusside was dissolved in isotonic saline (1 mg/ml) as a stock solution and injected in doses of 0.1, 1.0 and 10.0 nmoles/100 gbw. All stock solutions were stored on ice and diluted with isotonic saline at room temperature immediately prior to injection. The PG vehicles when diluted with an appropriate volume of saline did not affect the MAP.

Arachidonic acid, the precursor for PGs of the "2" series, was dissolved in 100 mM Na\textsubscript{2}CO\textsubscript{3} and administered as the Na salt at 10, 100, 300, 500, and 1000 nmoles/100 gbw. Di-homo-\gamma-linolenic acid, the precursor for PGs of the "1" series, was injected as the Na salt in a dose of 1000 nmoles/100 gbw to assess whether PGs of the "1" series were synthesized to any significant degree by any of the strains of rats. Oleic and linolenic acids, neither of them PG precursors, were likewise injected as the Na salt at all of the above doses to determine the nonspecific effect of fatty acids on BP. Only animals that did not respond to the Na\textsubscript{2}CO\textsubscript{3} vehicle were used.

A working solution (5 mg/ml) of indomethacin was prepared by dissolving the drug in isotonic saline made alkaline (pH 8) by the addition of NaHCO\textsubscript{3}. The drug was administered at a dose of 5 mg/kg (0.1 ml of the working solution/100 gbw) in divided doses over a 30-minute period. At least 20 minutes were allowed after the final injection of indomethacin before AA was injected at the largest dose used to verify complete inhibition of PG synthesis.

The data obtained were evaluated by unpaired Student's t test and considered significant at p < 0.05. All regression lines were calculated according to the least squares method and tested for significance by linear correlation coefficients.

Results

The MAP of the three groups of age-matched rats and the actual reduction (\(\Delta\)MAP) and percent reduction (\%\(\Delta\)MAP) in BP to the administration of PGE\textsubscript{2} and PGI\textsubscript{2} at 0.01, 0.1, 1.0 and 10.0 nmoles/100 gbw are summarized in table 1. The administration of PGE\textsubscript{2} and PGI\textsubscript{2} cause a dose-dependent decrease in BP in the three strains of rats. The actual decrease in BP to PGE\textsubscript{2} and PGI\textsubscript{2} was significantly greater in the SHRs; however, these data must be interpreted with caution because the initial BP of the SHRs was also greatly elevated above those of the controls.

A plot correlating the resting BP with the actual decrease in BP to 10.0 nmoles PGI\textsubscript{2}/100 gbw is shown for the combined groups of W, SHR and WKY rats (fig. 1). There is a highly significant correlation between these parameters, indicating that the vasodepressor response is directly related to the initial level of the BP. A similar and significant correlation also exists between initial BP and the hypotensive response to doses of PGI\textsubscript{2} or PGE\textsubscript{2} that we employed in the three strains of rats when they were evaluated separately or together. We interpret these results to mean that the enhanced vasodepressor responses are not necessarily a result of an inherent specific increase in sensitivity of the SHR to prostaglandins but rather are a consequence of the elevated BP per se. This latter supposition was lent further credence by the experiments in which the hypotensive responses to i.a. injections of NaNP at 0.1, 1.0 and 10.0 nmoles/100 gbw were measured in the three groups of rats.

The actual drop in BP to all but the lowest dose of NaNP was significantly greater in the SHRs; however, the percent change in BP did not vary among
ARACHIDONIC ACID RESPONSES IN SHR/Lukacscko et al.

Table 1. Decrease in Blood Pressure after Intrararterial Injection of Prostaglandins (PGE\textsubscript{1} and PGI\textsubscript{2})

<table>
<thead>
<tr>
<th>Rat</th>
<th>BP 0.01 (nmole/gbw)</th>
<th>BP 0.1 (nmole/gbw)</th>
<th>BP 1.0 (nmole/gbw)</th>
<th>BP 10.0 (nmole/gbw)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PGE\textsubscript{1}</td>
<td>PGI\textsubscript{2}</td>
<td>PGE\textsubscript{1}</td>
<td>PGI\textsubscript{2}</td>
</tr>
<tr>
<td>WKY</td>
<td>MAP 114 ± 4</td>
<td>112 ± 2</td>
<td>117 ± 3</td>
<td>117 ± 2</td>
</tr>
<tr>
<td></td>
<td>ΔMAP 9 ± 1</td>
<td>9 ± 1</td>
<td>25 ± 2</td>
<td>32 ± 2*</td>
</tr>
<tr>
<td></td>
<td>%ΔMAP 8 ± 1</td>
<td>8 ± 1</td>
<td>21 ± 2*</td>
<td>27 ± 2*</td>
</tr>
<tr>
<td>n</td>
<td>(9)</td>
<td>(8)</td>
<td>(12)</td>
<td>(15)</td>
</tr>
<tr>
<td>SHR</td>
<td>MAP 143 ± 2†</td>
<td>146 ± 4†</td>
<td>138 ± 2†</td>
<td>117 ± 4†</td>
</tr>
<tr>
<td></td>
<td>ΔMAP 13 ± 1†</td>
<td>15 ± 1†</td>
<td>39 ± 2†</td>
<td>51 ± 2†</td>
</tr>
<tr>
<td></td>
<td>%ΔMAP 9 ± 1</td>
<td>10 ± 1</td>
<td>28 ± 2†</td>
<td>35 ± 2†</td>
</tr>
<tr>
<td>n</td>
<td>(11)</td>
<td>(11)</td>
<td>(15)</td>
<td>(14)</td>
</tr>
<tr>
<td>Wistar</td>
<td>MAP 107 ± 3</td>
<td>108 ± 4</td>
<td>111 ± 2</td>
<td>114 ± 3</td>
</tr>
<tr>
<td></td>
<td>ΔMAP 8 ± 1</td>
<td>11 ± 1</td>
<td>30 ± 2</td>
<td>43 ± 2</td>
</tr>
<tr>
<td></td>
<td>%ΔMAP 8 ± 1</td>
<td>10 ± 1</td>
<td>27 ± 2</td>
<td>38 ± 2</td>
</tr>
<tr>
<td>n</td>
<td>(13)</td>
<td>(8)</td>
<td>(17)</td>
<td>(13)</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± 1 SE; MAP = mean arterial blood pressure (mm Hg); ΔMAP = change in blood pressure (mm Hg); %ΔMAP = percent change in blood pressure; (n) = number of animals.

*Wistar Kyoto (WKY) rats differ from Wistar rats (p < 0.05).
†Spontaneously hypertensive rats (SHR) differ from WKY controls (p < 0.05).
‡SHRs differ from Wistar controls (p < 0.05).

The three strains except at a dose of 1.0 nmole/100 gbw, a dose to which W rats responded with a greater depressor response than either SHR or WKY rats (table 2). Additionally, a plot correlating the initial BP with the actual drop in BP to 10.0 nmoles NaNP/100 gbw in the three groups of animals combined indicates a highly significant correlation between these two parameters (fig. 2). Similar correlations exist in each of the three groups when evaluated separately.

When the percent change in mean arterial blood pressure (%ΔMAP) to the injection of PGE\textsubscript{1} was calculated we found that, while the hypotensive responses did not differ between SHR and W rats, the %ΔMAP was significantly greater in both SHR and W as compared to WKY rats at all doses of PGE\textsubscript{1} except at a concentration of 0.01 nmole/100 gbw (table 1). The percent change in MAP to the administration of PGI\textsubscript{2} did not differ significantly between SHR and normotensive control rats except at 0.1 nmole/100 gbw, the only dose to which SHRs were more responsive than WKY rats. However, PGI\textsubscript{2} elicited a greater %ΔMAP in W as compared to WKY rats at all doses.

![Figure 1](http://hyper.ahajournals.org/)

Figure 1. Regression line correlating the decrease in mean arterial blood pressure as a function of initial BP in Wistar, Wistar-Kyoto (WKY), and spontaneously hypertensive rats (SHR) to 10.0 nmoles PGI\textsubscript{2}/100 gbw.

![Figure 2](http://hyper.ahajournals.org/)

Figure 2. Regression line correlating the decrease in mean arterial blood pressure as a function of initial blood pressure in Wistar, Wistar-Kyoto (WKY), and spontaneously hypertensive rats (SHR) to 10.0 nmoles sodium nitroprusside/100 gbw.
Table 2. Decrease in Blood Pressure after Intraarterial Injection of Sodium Nitroprusside (Na NP)

<table>
<thead>
<tr>
<th>Rat</th>
<th>BP</th>
<th>0.1</th>
<th>1.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>WKY</td>
<td>MAP</td>
<td>108 ± 3</td>
<td>107 ± 3</td>
<td>110 ± 3</td>
</tr>
<tr>
<td></td>
<td>ΔMAP</td>
<td>7 ± 1</td>
<td>36 ± 1*</td>
<td>67 ± 3</td>
</tr>
<tr>
<td></td>
<td>%ΔMAP</td>
<td>7 ± 1</td>
<td>34 ± 1*</td>
<td>62 ± 2</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
</tr>
<tr>
<td>SHR</td>
<td>MAP</td>
<td>154 ± 5†</td>
<td>153 ± 5†</td>
<td>157 ± 5†</td>
</tr>
<tr>
<td></td>
<td>ΔMAP</td>
<td>7 ± 1</td>
<td>47 ± 2†</td>
<td>96 ± 4†</td>
</tr>
<tr>
<td></td>
<td>%ΔMAP</td>
<td>5 ± 1</td>
<td>32 ± 2†</td>
<td>61 ± 1</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>(11)</td>
<td>(11)</td>
<td>(12)</td>
</tr>
<tr>
<td>Wistar</td>
<td>MAP</td>
<td>103 ± 4</td>
<td>104 ± 3</td>
<td>104 ± 3</td>
</tr>
<tr>
<td></td>
<td>ΔMAP</td>
<td>7 ± 1</td>
<td>41 ± 1</td>
<td>65 ± 2</td>
</tr>
<tr>
<td></td>
<td>%ΔMAP</td>
<td>7 ± 1</td>
<td>40 ± 1</td>
<td>63 ± 2</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± 1 se; MAP = mean arterial blood pressure (mm Hg); ΔMAP = change in blood pressure (mm Hg); %ΔMAP = percent change in blood pressure; (n) = number of animals.

*Wistar Kyoto (WKY) rats differ from Wistar rats (p < 0.05).
†Spontaneously hypertensive rats (SHR) differ from WKY rats (p < 0.05).
‡SHRs differ from Wistar rats (p < 0.05).

except 0.01 nmole/100 gbw. The data also indicate that PGI2 is about 10 times more potent than PGE2 as a vasodepressor in the three strains of rats at doses exceeding 0.01 nmole/100 gbw (table 1) since approximately 10 times more PGE2 than PGI2 is required to give an equivalent drop in BP. In addition, PGI2 induced a longer lasting BP reduction than equal doses of PGE2 (fig. 3). The stable metabolite of PGI2, 6-oxo-PGF1α, did not lower BP in any of the animals at doses up to 20 nmole/100 gbw.

The i.a. injection of AA induced regularly a biphasic response in BP in all strains of rats consisting of an initial transient fall followed by a secondary, more sustained hypotensive response (fig. 4). Only the transient event was elicited by the i.a. administration of linolenic or oleic acids.

The depressor response induced by di-homo-γ-linolenic acid was in no way different from that following injections of nonspecific fatty acids, indicating that this fatty acid did not serve as an adequate substrate for blood vessel cyclooxygenase in the rat.

Indomethacin did not abolish or alter the initial fall in MAP to AA but did completely inhibit the secondary hypotensive response (fig. 4) without appreciably influencing the basal MAP in any of the strains of rats. It follows that the secondary long-lasting reduction in BP is mediated by PGs whereas the initial short-lasting hypotensive response is characteristic of the injection of all fatty acids in each of the three groups examined.

Blood pressure responses to i.a. injections of 10, 100, 300, 500, and 1000 nmole AA/100 gbw are summarized in table 3. The actual BP reduction following equivalent doses of AA did not vary significantly between the WKY and W rats at either 10 or 100 nmole AA/100 gbw, whereas at higher doses the W rats were significantly more responsive to AA.

In contrast SHRs exhibited a significantly smaller response than either W or WKY rats to the lowest dose of AA and also a smaller response than W rats to 100 nmole AA/100 gbw.

When percent reduction in BP (perhaps a more accurate measure of the responsiveness to a vasodepressor agent than actual drop in BP) was con-

![Figure 3](http://hyper.ahajournals.org/)

![Figure 4](http://hyper.ahajournals.org/)
TABLE 3. Decrease in Blood Pressure after Intraarterial Injection of Arachidonic Acid (AA)

<table>
<thead>
<tr>
<th>Rat</th>
<th>BP</th>
<th>n mole AA/100 gbw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>WKY</td>
<td>MAP</td>
<td>120 ± 3*</td>
</tr>
<tr>
<td></td>
<td>ΔMAP</td>
<td>6 ± 2</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>(17)</td>
</tr>
<tr>
<td>SHR</td>
<td>MAP</td>
<td>165 ± 5††</td>
</tr>
<tr>
<td></td>
<td>ΔMAP</td>
<td>1 ± 1††</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>(16)</td>
</tr>
<tr>
<td>Wistar</td>
<td>MAP</td>
<td>106 ± 3</td>
</tr>
<tr>
<td></td>
<td>ΔMAP</td>
<td>6 ± 2</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>(15)</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± 1 SD; MAP = mean arterial blood pressure (mm Hg); ΔMAP = change in blood pressure (mm Hg); (n) = number of animals.

†Spontaneously hypertensive rats (SHR) differ from Wistar Kyoto (WKY) rats (p < 0.05).
‡SHRs differ from Wistar rats (p < 0.05).

Considered, SHRs had a higher threshold to AA and were significantly less responsive than either W or WKY rats at the two lower doses of AA administered (fig. 5). Furthermore, W rats reacted with greater hypotensive responses to doses of 300 nmoles AA/100 gbw and higher than did SHR or WKY rats.

Discussion

The role of PGs in the etiology and pathogenesis of hypertension is not clear. There exists, however, sufficient evidence to indicate that PGs can contribute to the regulation of circulatory homeostasis. Prostaglandin E2 has been implicated as the endogenous vasodepressor metabolite of AA;18 however, more recent data suggest that PG12 might be the major prostaglandin synthesized by vascular tissue.26 In light of the observation that PGE2 and PG12 are potent vasodilators and are synthesized by blood vessels from endogenous substrate, one might propose that a decreased responsiveness to PGs or perhaps an altered capacity to synthesize vasodilator PGs may contribute to the development of hypertension.

Whenever hypotensive responses to PGs are examined on the basis of percent changes in BP, the present data indicate that there are no significant differences between SHR and W rats to injections of either PGE2 or PG12 or between SHR and WKY rats to PG12. In contrast, hypotensive responses to PGE2 were generally greater in SHR as compared to WKY rats. Since PGE2 reduces norepinephrine release from sympathetic nerve endings,16 it has been suggested that by virtue of diminishing the effects of increased sympathetic activity characteristic of the SHR,3 it may evoke a greater depressor response in the hypertensive animal than in normotensive controls.24 This hypothesis is lent further credence by our data since we found essentially no differences between SHRs and either group of normotensive control rats in the hypotensive responses to PG12, a substance that has been reported to be many times less potent than PGE2 in inhibiting sympathetic neurotransmitter releases.32 Furthermore, recent studies have demonstrated that the reduction in BP to the i.v. administration of PGE2 may be mediated in part by a reflex initiated by vagal afferents and that SHRs seem especially sensitive to this effect.26 The observations above could explain the more pronounced hypotensive response of SHR as compared to WKY rats to PGE2. The fact that both PGE2 and PG12 generally elicited smaller hypotensive responses in WKY than W rats, however, suggests that variances between SHR and WKY rats with regard to the BP-lowering effects of PGs may be not

![Figure 5](http://hyper.ahajournals.org/)

FIGURE 5. Dose-related decrease in mean arterial blood pressure to arachidonic acid. * = Wistar rats differ from both Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) (p < 0.05); ** = SHRs differ from both Wistar and WKY rats (p < 0.05). Number of animals as in table 3.
only related to basal BP but may also be strain-dependent since such variances exist between the two normotensive controls. Moreover, the increased responsiveness of SHR and W as compared to WKY rats to PGE\textsubscript{2} or PGI\textsubscript{2} seems specific for PGs in that the administration of NaNP resulted in a % Δ MAP that essentially did not vary among the three groups of rats.

Previously others10 have found that no difference exists with regard to the BP-lowering effect of i.a. injections of PGD\textsubscript{2} and PGE\textsubscript{2} between the New Zealand genetically hypertensive strain and normotensive control rats. These results are contrary to recent reports suggesting that both PGI\textsubscript{2}27 and PGE\textsubscript{2}27,28 are significantly more active in causing vasodepressor responses in SHR than in normotensive rats. In these experiments not only was the PGE\textsubscript{2}-induced absolute drop in BP well correlated with the initial BP, but, also, reducing the BP of the SHRs by means of anti-hypertensive drug therapy proportionately reduced the hypotensive response to PGE\textsubscript{2} to a level obtained in control rats.28 These data might be interpreted to indicate that there is no inherent increase in sensitivity in SHRs to PGE\textsubscript{2} were it not for the fact that injections of acetylcholine and isoproterenol elicited identical, absolute reductions in BP in untreated SHR and control animals.28 In contrast, a similar study28 has shown that the actual reduction in BP in acetylcholine is greater in SHR and renal hypertensive rats than in normotensive controls whereas the percent change in BP is similar among the three groups. Our data also indicate that a positive correlation exists between initial BP and the actual reduction in BP to constant doses of PGs or NaNP in control groups as well as in SHRs. On the basis of these and all other experimental results described above, it seems reasonable to conclude that SHRs do not have a decreased responsiveness to vasodepressor PGs, an alteration that might have helped to explain the elevation of BP in these animals. In fact, it appears that they may have an increased sensitivity to the BP-lowering effect of PGE\textsubscript{2}.

It has recently been reported1 that in the rat and rabbit PGI\textsubscript{2} was 4 to 8 times more potent than PGE\textsubscript{2} in decreasing systemic BP. The PGs were administered by the i.v. route, however, requiring transit through the lungs before being distributed systemically. Since PGI\textsubscript{2}, unlike PGE\textsubscript{2}, is not inactivated by the lungs,27,28 direct administration to blood vessels or i.a. injection are more accurate ways to compare the immediate effects of these substances than i.v. injection. Evidence obtained by direct microscopic observation of small blood vessels in the rat cremaster muscle suggests that PGI\textsubscript{2} is at least as potent as PGE\textsubscript{2} in eliciting arteriolar dilation.3 The data reported in the present study indicate that at threshold doses PGE\textsubscript{2} is as potent as PGI\textsubscript{2} in lowering BP. With increasing doses, however, PGE\textsubscript{2} is approximately 10 times less active than PGI\textsubscript{2} in producing a hypotensive response when both are administered via the i.a. route.

Arachidonic acid is readily converted to PGs by rat aortic strips in vitro3 and in vivo.4 While it is still uncertain which of the vasodepressor PGs produced is the principal one, it appears that both PGE\textsubscript{2}4 and PGI\textsubscript{2}27 are readily synthesized in vitro by rat vascular tissues. Whichever PG is released, the present data demonstrate that the hypotensive responses elicited by the administration of threshold or low doses of AA in vivo are significantly smaller in SHRs than in either group of normotensive control animals.

On the other hand, the hypotensive response to higher doses of AA (300 nmoles and above) did not differ between SHR and WKY rats but was significantly lower than those in W rats. That the greater hypotensive response of W rats to the higher doses of AA is not simply due to an increased responsiveness to synthesized PGE\textsubscript{2} or PGI\textsubscript{2} is evidenced by the observation that there are no significant differences between SHR and W rats to the injection of either of these PGs. However, blood vessels of W rats may have a greater maximum capacity to synthesize vasodepressor PGs from AA than either SHR, or WKY rats. That the hypotension is due to PG synthesis is convincingly shown by the fact that indomethacin completely inhibited the response (fig. 4) and that neither oleic acid nor linolenic acid caused a sustained depression in BP. Furthermore, administration of di-homo-γ-linolenic acid did not result in systemic hypotension even when injected at the largest dose in any of the three strains of rat, suggesting that AA is the preferred substrate for PG synthesis in these animals.

Prostaglandins might be implicated in the genesis of hypertension in a variety of ways. Recent studies have shown that SHR arterial tissue releases more PGE\textsubscript{2}5 and PGI\textsubscript{2}5 than vascular tissue obtained from normotensive rats. Other studies have indicated that a change in the activity of PG-degrading enzymes might be an important factor in the development of high BP in the New Zealand strain of genetically hypertensive rats.6,5 It has also been reported6 that isolated perfused kidneys of both salt-loaded and renal hypertensive rats release less PGE-like activity when stimulated with norepinephrine and AA than kidneys of normal rats. One can only speculate as to whether the changes above and the decrease in the responses to AA in the SHR that we observed are secondary to the hypertension or are primary factors in the initiation or maintenance of the elevated BP. The present data also do not clarify whether differences in uptake or alterations in the conversion of AA are the cause of the changes observed in the SH rat. Notwithstanding the above possibilities, one might hypothesize that, whereas in the normal rat the primary metabolite of AA in small resistance vessels is PGI\textsubscript{2}, in the SHR a decrease, however subtle, in the ratio of released PGI\textsubscript{2} to PGE\textsubscript{2} occurs to account for the reduced response to AA.

In conclusion, it seems most likely that PGs are intimately involved in the regulation and/or maintenance of BP in the SHR. Whether the reduced...
capacity to utilize exogenously administered AA is a reflection of an inherent change in the blood vessels of the hypertensive animal and whether this change is of pathophysiologic significance is open to question and will have to await further study.

Acknowledgments

Prostaglandin E\textsubscript{2} and prostacyclin were kindly supplied by Drs. U. Axen and J. Pike of the Upjohn Company. Indomethacin was a gift from Merck, Inc.

References

1. Armstrong JM, Lattimer N, Moncada S, Vane JR: Comparison of the vasodepressor effects of Prostacyclin and 6-oxo-prostaglandin F\textsubscript{1\alpha} with those of Prostaglandin E\textsubscript{2} in rats and rabbits. Br J Pharmacol 62: 125, 1978
10. Armstrong JM, Boura AL, Hamberg M, Samuelsson B: A comparison of the vasodepressor effects of the cyclic endoperoxides PGG\textsubscript{2} and PGG\textsubscript{2} with those of PGD\textsubscript{2} and PGE\textsubscript{2} in hypertensive and normotensive rats. European J Pharmacol 39: 251, 1976
15. Kadovitz PJ: Effects of prostaglandins E\textsubscript{1}, E\textsubscript{2} and A\textsubscript{2} on vascular resistance and responses to noradrenaline, nerve stimulation and angiotension in the dog hind limb. Br J Pharmacol 46: 395, 1972
16. Hedqvist P: Studies on the effect of prostaglandins E\textsubscript{2} and E\textsubscript{2} on the sympathetically neurally transmitted somatic in some animal tissues. Acta Physiol Scand (suppl 345), 1970
25. Weizell R, Steppeler A, Starke K: Effects of prostaglandin E\textsubscript{2}, prostaglandin I\textsubscript{2} and 6-keto-prostaglandin F\textsubscript{1\alpha} on adrenergic neurotransmission in the pulmonary artery of the rabbit. European J Pharmacol 52: 137, 1978
27. Pace-Acsiak CR, Carrara MC, Nicolau KC: Prostaglandin I\textsubscript{2}, has more potent hypotensive properties than prostaglandin E\textsubscript{2} in the normal and spontaneously hypertensive rat. Prostaglandins 15: 999, 1978

ARACHIDONIC ACID RESPONSES IN SHR/Lukanetto et al. 663
Reduced hypotensive action of arachidonic acid in the spontaneously hypertensive rat.
P Lukacsko, E J Messina and G Kaley

Hypertension. 1980;2:657-663
doi: 10.1161/01.HYP.2.5.657

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1980 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/2/5/657.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/