Renin-Secreting Tumor

Case Report

GLORIA VALDES, M.D., JOSE M. LOPEZ, M.D., PEDRO MARTINEZ, M.D., HELMAR ROSENBERG, M.D., PATRICIO BARRIGA, M.D., JOSE A. RODRIGUEZ, M.D., AND NORBERT OTIPKA, M.D.

SUMMARY Renin-secreting tumor, though rare, should be considered in assessing severe hyperreninemic, hypertensive patients. We studied an 18-year-old girl with hypokalemic hyperreninemic hyperaldosteronism. No angiographic lesion could be detected. The plasma renin activity (PRA) of the right/left renal vein was 73. With a presumptive diagnosis of renin-secreting tumor (RST), the patient was operated on, and a cortical nodule was found on the right lower pole. Partial nephrectomy was followed by a rapid fall in PRA (half-life, 33–44 min) and normalization of blood pressure (BP). At $3\frac{1}{2}$ months postoperatively, the patient showed normotension, normokalemia, normal aldosterone, and slightly elevated PRA unresponsive to postural changes and furosemide treatment. Tumoral PRA secretion responded to postural stimulus, spironolactone use, and nitroprusside-induced hypotension. Neither the high aldosterone excretion nor hyperreninemia decreased after 3 days of DOCA; this agrees with a previously reported case suggesting the usefulness of this test in the diagnosis of RST. (Hypertension 2: 714–718, 1980)

KEY WORDS • renin-secreting tumor • hyperreninemia • deoxycorticosterone acetate (DOCA) • kidney function • spironolactone • furosemide • plasma renin activity

ELEVEN years after the first case was reported by Robertson et al.,1 renin secreting tumor (RST) continues to be a rare cause of curable hypertension. Initial cases were diagnosed by the postsurgical histological study,1,3 and the most recent ones have been recognized preoperatively.4–11

We describe an additional case in which a presumptive diagnosis was made preoperatively, facilitating removal of the tumor and subsequent rapid and sustained normotension.

Case Report

An 18-year-old white girl was referred to the Catholic University Hospital because of hypertension of 2 years' duration. Her complaints were headaches, leg cramps, easy fatigability, polydipsia, and nocturia.
determined using a commercially available kit from
New England Nuclear.

Results obtained are the following: hematocrit 42%,
BUN 15 mg/dl, creatinine clearance 89 ml/min,
plasma creatinine 0.8 mg/dl. The electrocardiogram,
serum albumin, total protein, calcium phosphate, uric
acid, cholesterol, alkaline phosphatase, LDH, SGOT,
and cortisol were all normal, as were urinary 17-
hydroxisteroid, 17-ketosteroid, epinephrine and
norepinephrine excretion rates. A renal arteriogram
showed no abnormalities. Maintained hypokalemia,
kaliuresis, elevated urinary aldosterone, and
hyperreninemia were observed under balance (basal)
conditions (table 1). Supine plasma aldosterone con-
centration was 13 ng/dl (normal = 3–31.4 ng/dl).
Under the same dietary conditions, 3 days of deoxy-
corticosterone acetate (DOCA), 10 mg intramuscu-
larly twice per day, did not change body weight,
arterial pressure, PRA, or urinary aldosterone excre-
tion rate (table 1).

The patient was treated for 2 months with
spironolactone, 250 mg/day. Although arterial blood
pressure (BP) remained at 220/150 mm Hg she felt
considerably improved, with disappearance of cramps
and fatigue. On readmission to the hospital,
laboratory work-up performed under balance condi-
tions during spironolactone therapy revealed nor-
mokalemia and further increases in PRA and urinary
aldosterone excretion rate (table 1).

Renal venous blood samples were obtained in the
supine position before and after nitroprusside-induced
hypotension (table 2). The PRA ratio of the right/left
renal vein was 7.3; PRA of the left renal vein was the
same as that of the inferior vena cava in either
condition. Despite important percentual increments in
PRA from both sides after stimulation, identity
between the PRA of the left renal vein and inferior
vena cava points to a negligible renin secretion from
the left kidney.

A working diagnosis of RST of the right kidney was
made, and at operation a whitish tumor 15 mm in
diameter was found in the lower pole; subtotal
nephrectomy was done. Surgical exploration of
adrenal glands revealed no abnormalities.

Light microscopy demonstrated a well-defined comp-
tumor composed of ovoidal and fusiform cells
with no atypical cells (fig. 1). Bowie's stain was
positive; no nerve fibers were found with the modified
Chen-Bodian stain. The adjacent renal cortex had
arteriolosclerosis with hyalinization and signs of focal
and segmental ischemia in 10% of the glomeruli. The
count of juxtaglomerular cells was normal accord-
ging to Turgeon-Sommers technique. Electron micros-
copy showed three types of cytoplasmic granules:
Crystalloid, homogeneous, and fibrillar. The endo-
plasmic reticulum was rugged and dilated. Homog-

<table>
<thead>
<tr>
<th>Condition</th>
<th>Day</th>
<th>Plasma Na/K (mEq/liter)</th>
<th>Urinary Na/K (mEq/24 hrs)</th>
<th>Recumbent (ng/ml/hr)</th>
<th>Standing (ng/ml/hr)</th>
<th>AER (µg/24 hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal values</td>
<td></td>
<td></td>
<td></td>
<td>0.7–2.4</td>
<td>1.1–7.8</td>
<td>4–14</td>
</tr>
<tr>
<td>Basal</td>
<td>1</td>
<td>146</td>
<td>2.8</td>
<td>128</td>
<td>104</td>
<td>17.4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>146</td>
<td>3.0</td>
<td>128</td>
<td>101</td>
<td>41.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>142</td>
<td>2.9</td>
<td>129</td>
<td>105</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>143</td>
<td>2.8</td>
<td>100</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>144</td>
<td>2.7</td>
<td>32</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOCA</td>
<td>1</td>
<td>146</td>
<td>3.0</td>
<td>128</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>142</td>
<td>2.9</td>
<td>129</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>143</td>
<td>2.8</td>
<td>100</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>144</td>
<td>2.7</td>
<td>32</td>
<td>50</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>140</td>
<td>4.2</td>
<td>114</td>
<td>75</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>140</td>
<td>4.3</td>
<td>84</td>
<td>98</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.7</td>
</tr>
<tr>
<td>Spiroloactone</td>
<td>3</td>
<td>143</td>
<td>4.1</td>
<td>69</td>
<td>23</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>143</td>
<td>4.1</td>
<td>22</td>
<td>48</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>143</td>
<td>3.8</td>
<td>55</td>
<td>84</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>114</td>
<td>139</td>
<td>3.8</td>
<td>100</td>
<td>91</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>3.6</td>
<td>4.3*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Furosemide, 20 mg, administered intravenously.
FIGURE 1. Tumoral tissue with two sinusoidal vascular structures (S). (Epon and toluidine blue, × 500).

Homogeneous dense zones were found in the intercellular spaces. Nerve fibers were not detected by this technique (fig. 2).

Figure 3 shows the rapid fall in PRA and arterial pressure following tumor resection. As BP stabilized at 90/60 mm Hg 9 hours after resection and was accompanied by symptoms and signs of low peripheral perfusion, 500 ml of whole blood were transfused, obtaining a rise to 130/90 mm Hg. Thereafter, arterial BP showed a fluctuating pattern with a descending trend, attaining stable normotension 7 days after operation. The postoperative course was uneventful, and the patient was discharged on the 11th postoperative day normokalemic and normoreninemic. Monthly arterial pressure readings were normal, averaging 120/70 mm Hg.

The patient was readmitted 3½ months after operation and showed under balance conditions normokalemia, slightly elevated PRA with no response to the upright position, and a poor response to the combined postural and furosemide stimulus. A low normal urinary aldosterone excretion rate was also demonstrated, with a minimal increase over the normal range when challenged by furosemide.

FIGURE 2. Electron micrograph of tumoral cell showing nucleus (Nu), homogeneous and crystalloid granules (gr), rugged and dilated cytoplasm (rend), and dense intercellular zones (*). (× 8,000).
Discussion

Although RST is a rare cause of curable severe hypertension, it should be incorporated as working diagnosis in hyperreninemic hypertensive patients. The tumor is not always disclosed by renal arteriogram, due to its small size, and bilateral sampling from renal veins may be required for PRA determination. The pathological description of benign tumors in all reported cases prompted us to perform partial nephrectomy which we believe should be the procedure of choice whenever feasible.

Tumoral secretory capacity was stimulated by the erect position, spironolactone use, and nitroprusside-induced hypotension, indicating its dependence on both autonomic stimuli and volume changes, as previously described. Failure of DOCA to suppress PRA does not deny tumoral volume responsiveness. In our patient, no volume expansion could be achieved by the chronic administration of spironolactone, a significant rise in urinary aldosterone excretion was observed. The fixed aldosterone excretion under DOCA effect, while PRA increased, could be reported to depress aldosterone synthesis.

Basal plasma and urinary aldosterone were not as high as expected for such high PRA values, but this can be ascribed to the persistently low plasma potassium concentration. When normokalemia was achieved by the chronic administration of spironolactone, a significant rise in urinary aldosterone excretion was observed. The immediate postoperative PRA levels can be attributed to the inhibition exerted in the preoperative period by the high levels of angiotensin II. The importance of this renin-angiotensin feedback is supported by the pre-operative lack of renin output from the contralateral kidney under spironolactone therapy and subsequent induced hypotension. Normalization of supine PRA was achieved on the 9th postoperative day. The slightly high supine PRA found 3½ months after surgery could be attributed to a maintained basal stimulation secondary to the already present vascular damage. However, the hyponatremia indicates that a complete normalization of the renin-angiotensin system has not been attained. This could account for the low normal aldosterone excretion rate and its blunted response to furosemide.

As in our patient. The immediate postoperative PRA levels can be attributed to the inhibition exerted in the preoperative period by the high levels of angiotensin II. The importance of this renin-angiotensin feedback is supported by the pre-operative lack of renin output from the contralateral kidney under spironolactone therapy and subsequent induced hypotension. Normalization of supine PRA was achieved on the 9th postoperative day. The slightly high supine PRA found 3½ months after surgery could be attributed to a maintained basal stimulation secondary to the already present vascular damage. However, the hyponatremia indicates that a complete normalization of the renin-angiotensin system has not been attained. This could account for the low normal aldosterone excretion rate and its blunted response to furosemide.

Basal plasma and urinary aldosterone were not as high as expected for such high PRA values, but this can be ascribed to the persistently low plasma potassium concentration. When normokalemia was achieved by the chronic administration of spironolactone, a significant rise in urinary aldosterone excretion was observed. The fixed aldosterone excretion under DOCA effect, while PRA increased, could be reported to depress aldosterone synthesis.

Acknowledgments

The authors wish to thank Dr. Jorge Ruiz Salinas for referral of the patient and Dr. Elisa Marusic for plasma and urinary aldosterone determinations.

References

Renin-secreting tumor. Case report.
G Valdés, J M Lopez, P Martinez, H Rosenberg, P Barriga, J A Rodriguez and N Otipka

Hypertension. 1980;2:714-718
doi: 10.1161/01.HYP.2.5.714

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1980 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/2/5/714

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/