Desensitization of Adenylate Cyclase and Increase of G_{ia} in Cardiac Hypertrophy Due To Acquired Hypertension

Michael Böhm, Peter Gierschik, Andreas Knorr, Katharina Larisch, Korinna Weismann, and Erland Erdmann

The present study investigated whether reduced adenylate cyclase activity and an increase in inhibitory guanine nucleotide binding proteins (G_{ia}), which have been observed in the failing human heart, already occur in myocardial hypertrophy before the stage of heart failure. In membranes of hypertrophic hearts from rats with different forms of experimentally induced hypertension without heart failure (one-kidney, one clip rats, deoxycorticosterone-treated rats, and rats with reduced renal mass), basal as well as isoprenaline-, 5'-guanylylimidodiphosphate-, and forskolin-stimulated adenylate cyclase activity was reduced. The activity of the catalyst was depressed in deoxycorticosterone but unchanged in one-kidney, one clip and reduced renal mass compared with controls. The number of β-adrenergic receptors was similar in all groups. Radioimmunological quantification of G_{ia} proteins revealed an increase by 73% in one-kidney, one clip, 67% in reduced renal mass, but only 20% in deoxycorticosterone compared with sham-operated, age-matched control rats. The increase of G_{ia} was accompanied by smaller changes of pertussis toxin-induced $[^{32}P]ADP$-ribosylation of a 40-kd membrane protein. It is concluded that G_{ia} contributes to the reduced adenylate cyclase activity in cardiac hypertrophy in one-kidney, one clip and reduced renal mass and to a smaller extent in deoxycorticosterone. It is suggested that an enhanced expression of G_{ia} could occur not only in severe heart failure but also in cardiac hypertrophy and could, therefore, contribute to myocardial depression and progression of disease in heart failure. In addition, G_{ia} might represent an important regulatory mechanism for cardiac adenylate cyclase activity and thus, might play an important role in various cardiac diseases. (Hypertension 1992;20:103–112)

KEY WORDS • experimental hypertension • hypertrophy • adenyl cyclase • guanine nucleotide regulatory protein • adrenergic receptors • cardiomyopathy • heart failure

In the failing human heart desensitization of adenylate cyclase occurs, which leads to blunted effects of cyclic AMP (cAMP)-dependent positive inotropic agents and endogenous catecholamines.1-4 This desensitization, which also impairs the effects of non-β-sympathomimetic cAMP-dependent positive inotropic agents,2,4,6 has been attributed to a decline in the number of β-adrenergic receptors1-4 and to an increase of pertussis toxin substrates.3,4,7 However, these data were obtained in human myocardium from terminally failing hearts obtained at heart transplantation. Hitherto, it has been unknown whether an increase of inhibitory guanine nucleotide binding proteins (G_{ia}) also occurs earlier during the development of cardiomyopathy, namely, in cardiac hypertrophy.

Myocardial hypertrophy has been regarded as an adaptive process to reduce wall stress when an increased pressure load is imposed on the myocardium.8 Hypertrophy has been suggested to be one of the initial steps that reduces the contractility of myocardium in the development of heart failure.9,10 However, it is unclear whether changes of β-adrenergic receptors or G_{ia} proteins occur in the hypertrophied human heart before the onset of heart failure. Since viable human myocardial tissue with hypertrophy is not available, we investigated different forms of experimentally induced hypertensive cardiomyopathy in rats. In renal hypertensive rats and in deoxycorticosterone (DOCA) rats, a reduction of β-adrenergic receptor–stimulated adenylate cyclase has been reported.11-13 The data on the density of β-adrenergic receptors are controversial. In DOCA rats, some investigators observed a decline of the number of β-adrenergic receptors,11 whereas others observed no changes.14 In renal hypertensive rats, increases15,16 as well as decreases15,12 or no changes14,17 of β-adrenergic receptors have been observed. Some investigators hypothesized that defects of G protein-effector coupling mechanisms (e.g., changes of G_{ia} proteins or the catalyst) could occur in cardiac hypertrophy due to acquired forms of hypertension and could be independent from β-adrenergic receptors.14-19 However, experimental data on G_{ia} changes in support of this suggestion are lacking.
The present study investigated whether changes of adenylate cyclase similar to those observed in the failing human heart, namely, heterologous adenylate cyclase desensitization involving G\textsubscript{\alpha} proteins, occur in the hypertrophied myocardium of rats with different forms of acquired hypertension before the development of heart failure. Thus, we studied one-kidney, one clip (1K1C) renal hypertensive rats, DOCA-treated one-kidney rats, and rats with reduced renal mass (RRM). Changes of cardiac adenylate cyclase activity were characterized and related to the amount of a 40-kd pertussis toxin substrate and the amount of expressed G\textsubscript{\alpha} proteins. G\textsubscript{\alpha} proteins were studied using a novel radioligand assay with the iodine-125-radiolabeled synthetic C-terminal decapptide of retinal transducin \alpha (KEN-LKDCGLF), which has been described recently.20 Cardiac \beta-adrenergic receptors were studied for comparison.

Methods

Wistar-Hagemann rats (n=62) were purchased from Hagemann (Münster, Germany) and were divided into four groups. In the first group (DOCA rats), DOCA pellets (50 mg) were implanted subcutaneously. The animals were given 1% NaCl for drinking water. In the second group (RRM rats), the upper and lower pole of the left kidney was extirpated. These animals were given 1% NaCl for drinking water. The third group (RRM rats), the lower pole of the left kidney was extirpated. One week later, the animals underwent nephrectomy on the right side. These procedures resulted in a reduction of renal mass by about 68–70%. RRM rats were given 0.5% NaCl for drinking water. All control animals underwent sham operations. Experiments were conducted 4–7 weeks after the operations were performed. In all experimental animals, hypertension was established for 2 weeks. Blood pressure was measured with the tail-cuff method according to Pfeffer et al.21 The last measurement was taken immediately before the rats were killed.

Adenylate Cyclase Determination

Particulate washed membrane fractions (10,000 g sediment) were prepared according to the method of Kruse and Scholz22 from homogenates of rat hearts. The activity of adenylate cyclase was determined in a reaction mixture containing 50 mmol/l [32P]\textalpha-ATP (approximately 0.3 \textmu Ci/100 \mu l), 50 mmol/l triethanolamine-HCl, 5 mmol/l MgCl\textsubscript{2}, 100 mmol/l EGTA, 1 mmol/l 3-isobutyl-1-methylxanthine, 5 mmol/l creatine phosphate, 0.4 mg/ml creatine kinase, and 0.1 mmol/l cAMP at pH 7.4 in a final volume of 100 \mu l. The mixture was preincubated for 5 minutes at 37°C. The reaction was started by addition of the membrane suspension (30 \mu g per tube) and was continued for another 20 minutes at the same temperature. Reactions were stopped by the addition of 500 \mu l of 120 mmol/l zinc acetate. cAMP was purified by chromatography on neutral alumina. After centrifugation for 5 minutes at 10,000g, 0.8 ml of the supernatant was applied on neutral alumina columns equilibrated with 0.1 mmol/l Tris-HCl, pH 7.5. The effluent was collected, and the [32P]cAMP was determined by measuring radioactivity in a liquid scintillation spectrometer.

Radioligand Binding Experiments

Rat hearts were chilled in 30 ml ice-cold homogenization buffer (10 mmol/l Tris-HCl, 1 mmol/l EDTA, dithiothreitol 1 mmol/l, pH 7.4). Connective tissue was trimmed away, myocardial tissue was minced with scissors, and membranes were prepared with a motor-driven glass-Teflon homogenizer for 1 minute. Afterward, the membrane preparation was homogenized by hand for 1 minute with a glass-glass homogenizer. The homogenate was spun at 484g (rotor, Beckman JA 20) for 10 minutes. The supernatant was filtered through two layers of cheesecloth, diluted with an equal volume of ice-cold 1 mol/l KCl, and stored on ice for 10 minutes. This suspension was then centrifuged at 100,000g for 30 minutes. For radioligand binding experiments, the pellet was resuspended in 50 vol incubation buffer (50 mmol/l Tris-HCl, 10 mmol/l MgCl\textsubscript{2}, pH 7.4) and homogenized for 1 minute with a glass-glass homogenizer. This suspension then was centrifuged at 100,000g for 45 minutes. The final pellet was resuspended in incubation buffer (50 vol) and was stored at -70°C. Storage did not alter the results.

The radioligand binding assays were performed in a total volume of 250 \mu l incubation buffer. The incubation was carried out at 37°C for 60 minutes. These conditions allowed for complete equilibration of the receptors with the radioligand. The reaction was terminated by rapid vacuum filtration through Whatman GF/C filters, and filters were immediately washed three times with 6 ml each of ice-cold incubation buffer. All experiments were performed in triplicate. Myocardial \beta-adrenergic receptors were studied using [32]P-cyanopindolol as radiolabeled ligand. Specific activity was 2,000 Ci/mmol; 3 \mu mol/l (-)-propranolol was used to determine nonspecific binding.

Pertussis Toxin–Induced [32P]ADP Ribosylation

[32P]ADP-ribosylation of G\textsubscript{\alpha} by pertussis toxin was performed for 1 hour at 37°C in a volume of 50 \mu l containing 100 mmol/l Tris-HCl, pH 8.0 at 20°C, 25 mmol/l dithiothreitol, 2 mmol/l iATP, 1 mmol/l GTP, 50 mmol/l [32P]NAD (800 Ci/mmol), and 20 \mu g/ml pertussis toxin that had been activated by incubation with 50 mmol/l dithiothreitol for 1 hour at 20°C before the labeling reaction. Optimal labeling conditions were achieved when 0.5% (vol/vol) Lubrol PX was present in the assay medium. Samples were subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) (10% [wt/vol] acrylamide, 16 cm total gel length). Gels were stained with Coomassie blue and dried before autoradiography was performed.

Immunoblotting Techniques

Immunoblotting techniques were performed according to Gierschik et al.23 The retinal transducin \alpha-subunits were purified from bovine rod outer segments as described elsewhere.23,24 The polyclonal antiserum (DS 4) was raised in rabbits against the C-terminal decapeptide of retinal transducin \alpha (KEN-LKDCGLF) coupled to keyhole limpet hemocyanin as described by Goldsmith et al.25 Under the conditions used, this serum was strongly reactive against \alpha\textsubscript{1}, \alpha\textsubscript{2}, and \alpha\textsubscript{6} but weakly reactive against \alpha\textsubscript{3} and \alpha\textsubscript{5}. The electrophoretic transfer and immunostaining methods have been described previously.20
Radioimmunoassay

The C-terminal synthetic peptide was iodinated by conjugation to the iodine-125-labeled acetylating agent N-succinimidyl 3-(4-hydroxy, 5-[125I]-iodophenyl) propionate according to Bolton and Hunter and modified as described recently. The assay was performed in a final volume of 80 μL, containing 20 μL radiolabeled peptide diluted to 10,000 cpm/tube in 50 mmol/L Na-phosphate buffer with 0.25% gelatine at pH 7.5, 20 μL antiserum dilution (1:100), and 40 μL solubilized membranes,transducin α in 50 mmol/L Na-phosphate buffer at pH 7.5 or solubilization buffer instead of membranes. Standard curves were constructed by using 0.25–25 μg/ml retinal transducin α. The assay was performed at 4°C for 18 hours. For precipitation of immune complexes, samples were supplemented with 30 μg staphylococcal protein A suspension and incubated for 30 minutes on ice. Details have been described elsewhere.

Miscellaneous

Protein was determined according to Lowry et al using bovine serum albumin as standard. SDS-PAGE was performed as described by Laemmli. Nucleotide-adsorption was investigated with the method of Dixon and Purdom. Human lymph (HL-60) cells were grown in suspension culture and induced to differentiate into mature myeloid forms by cultivation in the presence of 1.25% (vol/vol) dimethyl sulfoxide for 5 days. Details of cultivation and membrane preparations are described elsewhere.

Materials

Forskolin was donated by Dr. Metzger (Hoechst AG, Frankfurt, Germany). Carbachol was from Sigma Chemical Co., Deisenhofen, Germany. Guanosine 5'-triphosphate, 5'-guanylylimidodiphosphate [Gpp(NH)p], adenosine 5'-triphosphate, creatine phosphate, and creatine kinase were purchased from Boehringer-Mannheim (Germany), and isobutylmethylxanthine was purchased from EGA-Chemie, Steinheim, Germany. The ligand 125I-Cyp was from Amersham-Buchler, Braunschweig, Germany. Dithiothreitol was from Serva, Heidelberg, Germany. Pertussis toxin was from List Biological Laboratories, Campbell, Calif.). Antiserum (DS 4) was raised against the C-terminal decapetide of bovine retinal transducin α. Bolton and Hunter reagent for peptide iodination (N-succinimidyl 3-(4-hydroxy, 5-[125I]-iodophenyl) propionate, specific activity 2,000 Ci/mmol) was purchased from Amersham-Buchler. The C-terminal decapetide of transducin α was kindly provided by Prof. Dr. U. Weber, Tübingen, Germany. Immunoprecipitin (staphylococcal protein A adsorbant) suspension was from Gibco/BRL, Eggenstein, Germany. All other compounds used were of analytical or best grade commercially available. Only deionized and twice-distilled water was used throughout.

Statistics

The data shown are mean±SEM. Statistical significance was estimated with Student's t test for unpaired observations and analysis of variance according to Wallenstein et al. A value of p<0.05 was considered significant. K_v values and the drug concentration producing 50% of the maximal effect (EC₅₀) were determined graphically in each individual experiment.

Results

Blood Pressure and Myocardial Hypertrophy

As shown in Table 1, systolic blood pressure was elevated similarly above 200 mm Hg in all experimental groups of acquired hypertension. Consistently, heart weight and heart weight-to-body weight ratio were increased in all groups with hypertension compared with controls. In all groups, there was a decrease of body weight. The decline in weight was significant and stronger in DOCA and RRM than in 1K1C rats.

Adenylate Cyclase Activity

Concentration–response curves for isoprenaline summarize the effects of α-adrenergic receptor stimulation on cardiac adenylate cyclase activity (Figure 1, left panel). In either group with experimentally acquired hypertension, the ability of isoprenaline to stimulate adenylate cyclase activity was reduced. This reduction was more pronounced in DOCA than in 1K1C or RRM rats. To investigate whether the effects of agents bypassing the α-adrenergic receptor–mediated stimulation of adenylate cyclase are sustained, we investigated the poorly hydrolyzable guanine nucleotide analogue Gpp(NH)p and the diterpene derivative forskolin. The effects of both Gpp(NH)p (Figure 1, middle panel) and forskolin (Figure 1, right panel) were reduced compared with control rats. As with isoprenaline, the decline of the effectiveness of Gpp(NH)p and forskolin was strongest in DOCA rats as compared with 1K1C and RRM rats. One general problem for the determination of adenylate cyclase activity in hypertrophied myocardium was to control the preparation for the amount of membranes. To overcome this potential
pitfall, we related adenylate cyclase activity to both membrane protein and 5' nucleotidase activity as membrane marker enzyme. As summarized in Table 2, basal adenylate cyclase activities were similarly reduced in the experimental hypertensive animals when the data are related to milligrams membrane protein or to 5' nucleotidase activity (Table 2).

To study whether the reduced adenylate cyclase activity is due to defective G protein–effector coupling, enzyme activity was studied in the presence of 5 mmol/1 MnCl₂. Manganese ions are known to uncouple the catalytic subunit from guanine nucleotide regulatory sites. Thus, under these conditions the activity of the catalyst itself can be predominantly studied. Figure 2 summarizes the data. In 1K1C and in RRM rats, adenylate cyclase activity in the presence of MnCl₂ was not different compared with controls. This holds true for basal adenylate cyclase activity, adenylate cyclase stimulated with forskolin, and forskolin plus Gpp(NH)p. Addition of Gpp(NH)p did not further increase the effect of forskolin, indicating that in the presence of MnCl₂, only the effect of forskolin on the catalyst is studied. In contrast, in DOCA rats adenylate cyclase activity assayed in the presence of MnCl₂ was reduced compared with control rats and also compared with 1K1C and RRM rats. Similar results were obtained when the data were related to milligrams membrane protein or to 5' nucleotidase activity (Table 2). In DOCA the adenylate cyclase activity in the presence of MnCl₂ was also not further increased by forskolin plus Gpp(NH)p compared with forskolin alone. These data show that the catalytic subunit was completely uncoupled from the influences of guanine nucleotide–activated G proteins. It is depressed in DOCA but not in RRM and 1K1C rats.

Cardiac β-Adrenergic Receptors

Saturation experiments for ¹²⁵I-Cyp binding to cardiac membranes showed that binding of the radiolabeled ligand was monophasic and saturable (not shown). Table 3 summarizes the data. There were no differences in the numbers of cardiac β-adrenergic receptors between 1K1C, DOCA, RRM, or control rats. The data were similar when the receptor density was related to milligrams membrane protein or to 5' nucleotidase activity.

Gₐ Proteins

Figure 3 shows a typical autoradiogram for the pertussis toxin–induced [³²P] ADP ribosylation of a 40-kd protein in rat myocardial membranes. This protein comigrated with the 40-kd pertussis toxin substrate Gₐ, Gₐα from human leukemia (HL-60) cells and with G₁/Gₐ purified from bovine brain. Pertussis toxin labeling was enhanced in myocardial membranes from 1K1C and RRM rats and only slightly increased in DOCA compared with control. Figure 4 summarizes the data for all groups studied. There was a significant increase of pertussis toxin substrates only in 1K1C and RRM rats, whereas no significant increase in DOCA rats was detected.

To study whether the increase of pertussis toxin substrates in 1K1C and RRM rats is due to an enhanced expression of Gₐ proteins or whether it is due to other factors affecting the pertussis toxin–catalyzed ADP ribosylation reaction, we developed a radioimmunoassay to directly quantify the amounts of Gₐ proteins in rat cardiac membranes. DS 4 antiserum was raised in rabbits against the C-terminus of retinal transducin α.

Figure 5 shows that the antiserum was capable to immunostain a 40-kd membrane protein in rat cardiac membranes. Immunostaining of the 40-kd band was concentration dependency inhibited by the synthetic...
C-terminus of retinal transducin α (KENLKDCCGLF). DS 4 antiserum was used to quantify G\textsubscript{ia} in a radioimmunoassay with iodinated retinal transducin α (125I-KENLKDCCGLF) and retinal transducin α as standard. Figure 6 shows competition curves of increasing concentrations of retinal transducin α and membrane extracts from human leukemia cells (HL-60) and rat myocardial membranes. Transducin α, human leukemia cells (HL-60), and rat myocardial membranes were capable to concentration dependently displace DS 4 antiserum binding to iodinated retinal transducin α (125I-KENLKDCCGLF). As can be seen from the standard curve with retinal transducin α, the sensitivity of the radioimmunoassay was 0.25 ng/ml transducin α. The interassay variation was less than 10%. Figure 7 summarizes the results in the different groups with experimental hypertension. In 1K1C and RRM rats, there was an increase of G\textsubscript{ia} proteins by 73% and 67%, respectively; in DOCA rats, there was a small albeit significant increase by 20% compared with controls. Figure 8 shows the correlation of systolic blood pressure (left panel) and heart weight-to-body weight ratio (right panel) to the density of G\textsubscript{ia} proteins in control and hypertensive animals. It can be seen that in DOCA rats, the increase of G\textsubscript{ia} was less than in 1K1C or RRM rats, although elevation of blood pressure and cardiac hypertrophy were similar. Taken together, there is a substantial increase of expressed G\textsubscript{ia} proteins in 1K1C and RRM rats and a more moderate but significant increase in DOCA rats. The increase in G\textsubscript{ia} proteins poorly corresponds to the increase in pertussis toxin substrates, which was less pronounced and failed to detect the small increase of G\textsubscript{ia} in DOCA rats.

Discussion

The results of the present study show that in the hypertrophied myocardium from 1K1C and RRM renal hypertensive rats as well as that from DOCA rats, there is a desensitization of adenylate cyclase activity. The desensitization not only affects β-adrenergic receptor-stimulated adenylate cyclase but also Gpp(NH)p- and forskolin-stimulated activities. Desensitization of adenylate cyclase was not accompanied by significant changes of myocardial β-adrenergic receptors. Uncou-

TABLE 2. Adenylate Cyclase Activity Under Basal and Stimulated Conditions in Cardiac Membranes From One-Kidney, One Clip Rats, Deoxycorticosterone-Treated Rats, Rats With Reduced Renal Mass, and Control Rats

<table>
<thead>
<tr>
<th>Condition</th>
<th>Control</th>
<th>1K1C</th>
<th>DOCA</th>
<th>RRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related to mg protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>47.0±4.7</td>
<td>30.8±6.8</td>
<td>18.5±2.7</td>
<td>29.1±4.3</td>
</tr>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>Iso (10 μM)</td>
<td>795±99.9</td>
<td>367.1±31.3</td>
<td>226.2±22.2</td>
<td>323.3±6.0</td>
</tr>
<tr>
<td>(5)</td>
<td>(5)</td>
<td>(5)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>Gpp(NH)p (100 μM)</td>
<td>723.4±86.3</td>
<td>454.9±74.6</td>
<td>272.3±20.6</td>
<td>411.6±66.6</td>
</tr>
<tr>
<td>(5)</td>
<td>(6)</td>
<td>(5)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>Forskolin (30 μM)</td>
<td>914.5±128.1</td>
<td>618.8±48.5</td>
<td>277.2±53.1</td>
<td>570.2±77.4</td>
</tr>
<tr>
<td>(5)</td>
<td>(6)</td>
<td>(5)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>MnCl\textsubscript{2}</td>
<td>96.6±19.8</td>
<td>87.0±24.6</td>
<td>55.5±12.0</td>
<td>91.6±26.4</td>
</tr>
<tr>
<td>(6)</td>
<td>(6)</td>
<td>(5)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>MnCl\textsubscript{2}+forskolin</td>
<td>1,025.4±61.3</td>
<td>969.5±36.1</td>
<td>529.0±60.3</td>
<td>1,008.3±25.8</td>
</tr>
<tr>
<td>(6)</td>
<td>(6)</td>
<td>(6)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>Related to 5'nucleotidase (nmol Pi/mg protein • min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>1.5±0.1</td>
<td>0.9±0.2</td>
<td>0.5±0.1*</td>
<td>1.0±0.2†</td>
</tr>
<tr>
<td>(8)</td>
<td>(9)</td>
<td>(8)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>Iso (10 μM)</td>
<td>25.4±4.0</td>
<td>11.2±1.7†</td>
<td>6.2±0.9</td>
<td>11.1±0.7†</td>
</tr>
<tr>
<td>(5)</td>
<td>(5)</td>
<td>(5)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>Gpp(NH)p (100 μM)</td>
<td>23.4±1.9</td>
<td>13.0±2.3†</td>
<td>7.2±0.6*</td>
<td>14.9±2.6†</td>
</tr>
<tr>
<td>(5)</td>
<td>(6)</td>
<td>(5)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>Forskolin (30 μM)</td>
<td>29.0±3.3</td>
<td>17.8±1.8†</td>
<td>7.5±1.4*</td>
<td>18.5±2.7</td>
</tr>
<tr>
<td>(5)</td>
<td>(6)</td>
<td>(5)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>MnCl\textsubscript{2}</td>
<td>3.2±0.6</td>
<td>2.6±0.7</td>
<td>1.4±0.3†</td>
<td>3.3±0.9</td>
</tr>
<tr>
<td>(6)</td>
<td>(6)</td>
<td>(6)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>MnCl\textsubscript{2}+forskolin</td>
<td>34.1±3.1</td>
<td>29.5±1.6</td>
<td>13.6±1.4*</td>
<td>33±1.6</td>
</tr>
<tr>
<td>(6)</td>
<td>(6)</td>
<td>(6)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>MnCl\textsubscript{2}+forskolin+Gpp(NH)p</td>
<td>34.5±4.6</td>
<td>29.7±1.2</td>
<td>15.2±1.4*</td>
<td>33.2±0.8</td>
</tr>
<tr>
<td>(6)</td>
<td>(5)</td>
<td>(6)</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>

All experiments with MnCl\textsubscript{2} were performed without MgCl\textsubscript{2}; 1K1C, one-kidney, one clip rats; DOCA, deoxycorticosterone rats; RRM, reduced renal mass rats; Iso, isoprenaline; Gpp(NH)p, 5'guanylylimidodiphosphate.

*p<0.01, †p<0.05.
plugging of the catalyst from influences of G proteins by manganese ions showed that the activity of the catalyst is unchanged in 1K1C and RRM rats but markedly depressed in DOCA rats. Gi proteins, measured with a novel radioimmunochemical method, were observed to be increased by 73% in 1K1C and 67% in RRM but only by 20% in DOCA rats. The pertussis toxin–catalyzed [32P]ADP-ribosylation of a 40-kd Gi-related membrane protein showed smaller differences among the groups and only a marginal, insignificant increase in the DOCA group.

In renal hypertensive rats, reduced effects of β-adrenergic receptor stimulation on adenylate cyclase have been observed. Consistently, the positive inotropic effects of β-adrenergic receptor agonists were observed to be reduced. These functional alterations have been suggested to be due to a decline of the number of β-adrenergic receptors. On the other hand, some investigators observed no changes or even an increase of β-adrenergic receptors in sarcolemmal membranes of renal hypertensive rats. Therefore, it has been proposed that the decline in adenylate cyclase activity could be due to alterations in β-adrenergic receptor–G protein effector coupling alone or in concert with a reduction of β-adrenergic receptors.

Similar data have been obtained with DOCA rats. There was a marked reduction of adenylate cyclase activity but only a marginal decline of the number of β-adrenergic receptors. In the present study, desensitization of receptor-dependent and receptor-independent stimulation of adenylate cyclase activity was observed in DOCA, 1K1C, and RRM groups. These changes were not accompanied by a decline of the number of β-adrenergic receptors. One possible explanation for the discrepant findings concerning the number of β-adrenergic receptors is the age of the animals and the duration of clipping of the renal artery. In studies in which a decline in the number of

TABLE 3. Density and Antagonist Affinity of Myocardial β-Adrenergic Receptors in Membranes From One-Kidney, One Clip, Deoxycorticosterone-Treated Rats, Rats With Reduced Renal Mass, and Control Rats

<table>
<thead>
<tr>
<th>Group</th>
<th>[125I]-Cyp bound (fmol/mg protein)</th>
<th>[125I]-Cyp bound (fmol/nmol Pi/mg protein • min)</th>
<th>Kᵦ (pmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>31.6±3.4 (6)</td>
<td>1.1±0.3</td>
<td>66.9</td>
</tr>
<tr>
<td>1K1C</td>
<td>37.6±2.2 (5)</td>
<td>1.3±0.3</td>
<td>(48.6–86.8)</td>
</tr>
<tr>
<td>DOCA</td>
<td>36.6±2.9 (5)</td>
<td>1.1±0.1</td>
<td>54.8</td>
</tr>
<tr>
<td>RRM</td>
<td>32.8±4.2 (6)</td>
<td>1.2±0.1</td>
<td>(48.8–61.0)</td>
</tr>
</tbody>
</table>

Kᵦ values are given as mean with 95% confidence intervals. 1K1C, one-kidney, one clip rats; DOCA, deoxycorticosterone-treated rats; RRM, reduced renal mass rats.
\(^{32}\text{P}\)ADP-ribosylation was performed with 0.5% Lubrol PX (vol/vol) to obtain optimal radiolabeling as described in “Methods.”

\(^{32}\text{P}\)ADP-ribosylation into a 40-kd membrane protein in cardiac membranes from one-kidney, one clip (1C-1K) rats, deoxycorticosterone (DOCA)-treated rats, rats with reduced renal mass (RRM), and control rats (control). Myocardial membrane proteins were separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Labeled bands were cut out, and incorporation of radioactivity was measured by determination of Cerenkov radiation.

\(^{32}\text{P}\)ADP-ribosylation was performed with 0.5% Lubrol PX (vol/vol) to obtain optimal radiolabeling as described in “Methods.”

β-adrenergic receptors has been observed, the age of the animals was higher. In addition, renal hypertension was established for a longer period of time than in those studies in which a β-adrenergic receptor-independent desensitization of adenylate cyclase was observed (present study and References 17 and 19).

The reduced basal adenylate cyclase activity and the impaired effects of receptor-independent adenylate cyclase stimulators indicate that defects in the catalytic subunit or changes of the regulation by G proteins occur in the hypertrophied myocardium. To study the activity of the catalysis directly, we investigated adenylate cyclase activity in the presence of manganese ions, which uncouple the catalytic subunit from G proteins. Since the effects of forskolin to stimulate the adenylate cyclase were not further augmented by Gpp(NH)p in the presence of manganese ions, the catalyst is assayed under these conditions without the influence of guanine nucleotide–stimulated G proteins. Under these conditions, there was no difference of adenylate cyclase activity in 1K1C and RRM rats, but there was a marked reduction in activity in DOCA compared with control rats. Thus, the activity of the catalyst appears to be

\(^{32}\text{P}\)ADP-ribosylation into a 40-kd membrane protein in cardiac membranes from one-kidney, one clip (1C-1K) rats, deoxycorticosterone (DOCA)-treated rats, rats with reduced renal mass (RRM), and control rats (control). Myocardial membrane proteins were separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Labeled bands were cut out, and incorporation of radioactivity was measured by determination of Cerenkov radiation.
unchanged in 1K1C and RRM rats and reduced in DOCA rats. These data show that differential alterations of adenylate cyclase occur in different models of hypertensive cardiomyopathy, although the degree of cardiac hypertrophy is similar (present study). Since in heart failure the desensitization of adenylate cyclase has been suggested to be due to an enhanced activity of the sympathetic nervous system, it is possible that a different sympathetic drive accounts for the differences. However, no studies are available that directly compared parameters of sympathetic activation in these rat models of hypertension with a similar increase of blood pressure and the same degree of cardiac hypertrophy. Thus, the reasons for the differences have to remain unclear at present.

A heterologous desensitization of the cardiac adenylate cyclase activity has been observed in the human failing heart.34 This desensitization was accompanied by an increase of pertussis toxin substrates by 40% in diluted cardiomyopathy,34,47 whereas cholera toxin labeling of Gs,44 and the bioactivity of Gs, as judged from reconstitution of Gs, into S49 Gs-deficient cys mouse lymphoma cells was unchanged in the failing human myocardium. To investigate whether, as in human heart failure, an increase of Gs is observed in rat cardiac hypertrophy due to experimental hypertension, we subjected rat myocardial membranes of the three groups to pertussis toxin labeling. There was an increase in pertussis toxin labeling in 1K1C and RRM but only a weak increase in DOCA, indicating a differential increase of pertussis toxin substrates in the hypertensive animals of the different models. However, it cannot completely be ruled out that changes of Gs could also occur in the hypertension models in rats. This is suggested by the observations obtained in the dog model of pressure overload hypertrophy. In this model, a decrease of Gs, in the presence of unchanged Gs, was observed. The mechanisms by which Gs and Gs inhibit adenylate cyclase are not completely understood. As observed in S49 cys cells, a cell line that genetically lacks Gs, Gs is capable of directly inhibiting adenylate cyclase activity.37 However, it also has been reported38 that Gs affects coupling of B-adrenergic receptors to Gs. Thus, in the presence of enhanced Gs expression it is uncertain whether one can clearly differentiate experimentally between the influence of Gs and Gs changes on adenylate cyclase activity.

The mono ADP-ribosyltransferase activity of pertussis toxin ADP-ribosylates signal transducing G proteins, which possess a CAXX motif at their C-terminus (where C is cysteine, A is aliphatic, and X is any amino acid).39 The cysteine at the fourth position from the C-terminus is the acceptor site for ADP-ribose.39 However, there are several factors influencing the efficacy of the ADP-ribosylation reaction. An endogenous ADP-ribosyltransferase activity has been isolated from erythrocytes,41 which is capable to ADP-ribosylate Gs proteins in vitro. Besides endogenous ADP-ribosylation and endogenous inhibition thereof, pertussis toxin labeling is influenced by factors such as adenine or guanine nucleotides,42 B-subunit,43 and the biophysical properties of the membrane environment of Gs.44 In addition, NADase activity cleaving the substrate NAD for the ADP ribosylation reaction could influence pertussis toxin labeling in membranes.46 Thus, it is questionable whether pertussis toxin substrates reliably reflect the amount of "true" Gs proteins in the cardiac membranes studied.

To overcome problems that could potentially arise from incomplete pertussis toxin labeling, a sensitive radioimmunoassay was developed39 to exactly quantify the amount of immunodetectable Gs proteins. With this technique, a marked increase of Gs was observed in 1K1C and RRM rats, but only a marginal increase was detected in DOCA rats. Taken together, these data show that an increase of Gs proteins occurs in 1K1C and RRM rats, whereas the catalytic subunits appear to be unchanged in these models. Conversely, in DOCA rats the activity of the catalytic subunit is depressed, whereas there are only minor changes of Gs expression. Therefore, observations obtained in one experimental model of hypertensive cardiomyopathy should not be uncritically extended to other models. The difference between the ADP-ribosylation by pertussis toxins and the immunochemical data could indicate a role of posttranslational modifications of Gs in affecting the accuracy of Gs determinations of pertussis toxin labeling. However, it should be pointed out that Gs subtypes cannot be determined with DS 4 antisera, which preferentially recognizes Gs and Gs.

The findings of the present study point toward a role of the CAMP system in the development of membrane alterations in hypertensive cardiomyopathies. In neonatal rat cardiomyocytes cultivated with norepinephrine,
β-adrenergic receptor stimulation enhances the expression of $G_{i\alpha}$ proteins, whereas α-adrenergic receptor stimulation had no effect. Accordingly, treatment of rats with isoprenaline led to an increase of pertussis toxin substrates that was accompanied by an elevation of $G_{i\alpha}$ messenger RNA transcripts but no effects on $G_{i\alpha}$ transcription. The effects of cAMP on gene transcription have been shown to involve AP-2. This factor possesses a binding domain in the promoter region of the $G_{i\alpha}$ gene locus. Since an increase of the activity of the sympathetic nervous system has been observed in rats with renal hypertension, it is not unreasonable to hypothesize that the enhanced expression of cardiac $G_{i\alpha}$ proteins in renal hypertensive rats could be initiated by cAMP and AP-2. However, the increase of $G_{i\alpha}$ expression persists to the stage when adenylyl cyclase activity is depressed. Thus, other as yet unidentified factors might contribute to the maintenance of increased $G_{i\alpha}$ expression. On the contrary, the depression of the activity of the catalytic subunit of the adenylyl cyclase in DOCA might limit the expression of $G_{i\alpha}$ by reduced cAMP formation and less binding of cAMP-responsive elements to AP-2 in the latter condition. These findings support the important role of the sympathetic nervous system in hypertensive cardiomyopathies. Most likely, enhanced stimulation of β-adrenergic receptors leads to changes of the membrane adenylyl cyclase, whereas α$_1$-adrenergic receptor stimulation produces cardiac hypertrophy and β-myosin heavy chain gene induction.

The implications of the present study are that $G_{i\alpha}$ expression is enhanced not only in terminal failure but also in hypertrophied myocardium after pressure load in different models for experimental hypertension. These findings offer the interesting hypothesis that an increase of $G_{i\alpha}$ could occur in cardiac hypertrophy before overt heart failure develops and, thus, could contribute to the development and progression of pumping failure. In addition, initial evidence is provided that $G_{i\alpha}$ could play a role in the regulation of adenylyl cyclase activity to protect the heart from sympathetic overstimulation independently from β-adrenergic receptor downregulation. Future studies will have to show to which extent the data obtained in animal models for cardiac hypertrophy apply to human heart diseases.

Acknowledgments

We thank Elisabeth Ronft and Judith Sabo for their excellent technical assistance.

References

42. Hara-Yokoyama M, Furuyama Y: Endogenous inhibitor of the ADP-ribosylation of G protein(s) as catalyzed by pertussis toxin in rat liver. FEBS Lett 1988;234:27–30
Desensitization of adenylate cyclase and increase of Gi alpha in cardiac hypertrophy due to acquired hypertension.
M Böhm, P Gierschik, A Knorr, K Larisch, K Weismann and E Erdmann

Hypertension. 1992;20:103-112
doi: 10.1161/01.HYP.20.1.103

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1992 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/20/1/103

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/