Modulation of Norepinephrine Release by Galanin in Rat Medulla Oblongata

Kazushi Tsuda, Seiko Tsuda, Ichiro Nishio, Yoshiaki Masuyama, and Menek Goldstein

Galanin, a 29–amino acid peptide, is widely distributed in both the central and peripheral nervous systems and is colocalized with catecholamines, although its physiological significance remains to be elucidated. In the present study we investigated the regulatory mechanisms of galanin on norepinephrine release in rat medulla oblongata. In slices of medulla oblongata of Sprague-Dawley rats, galanin inhibited the stimulation-evoked ([3H]norepinephrine release in a concentration-dependent manner (fractional release ratio during electrical stimulation: control 0.937±0.043, mean±SEM, n=6; galanin 1×10^{-7} M 0.501±0.037, n=6, p<0.05; and galanin 1×10^{-6} M 0.299±0.018 n=6, p<0.05). Galanin potentiated inhibition of [3H]norepinephrine release by the α2-agonists (UK 14,304 and clonidine). The blockade of α2-adrenergic receptors by RX 781094 diminished the inhibition of norepinephrine release by galanin. Pretreatment of pertussis toxin, which interferes with the coupling of inhibitory guanosine triphosphate–binding proteins to adenylyl cyclase, significantly attenuated the suppressive effects of galanin on norepinephrine release. In slices of medulla oblongata obtained from spontaneously hypertensive rats (SHR), the inhibitory effect of galanin on norepinephrine release was significantly less than in those from age-matched Wistar-Kyoto rats. These results show that galanin might inhibit the stimulation-evoked norepinephrine release in rat medulla oblongata, at least partially mediated by α2-adrenergic receptors and the pertussis toxin-sensitive guanosine triphosphate–binding proteins. Moreover, less suppression of norepinephrine release by galanin in SHR suggests that galanin might be involved in the regulation of central sympathetic nervous activity in hypertension. (Hypertension 1992;20:361–366)

Key Words • peptides • medulla oblongata • norepinephrine • receptors, adrenergic, α2 • guanosine triphosphate • pertussis toxins • Wistar-Kyoto rats • spontaneously hypertensive rats

Galanin is a biologically active neuropeptide composed of 29 amino acids that was isolated from porcine upper intestine.1 The galanin-like immunoreactivity in the brain is demonstrated not only in pigs, but also in rats, monkeys, and humans.2,3 Immunohistochemical studies have shown that galanin-immunoreactive neurons are present in the brain and spinal cord as well as in neuronal structures in several peripheral systems.4 Skofitsch and Jacobowitz4 have observed the quantitative distribution of galanin-like immunoreactivity in rat central nervous system and reported that high concentrations were determined in the median eminence, hypothalamus, locus coeruleus, medulla oblongata, and the caudal spinal trigeminal nucleus.

Recent evidence has suggested that galanin might actively participate in the central control of blood pressure and other cardiovascular functions because a high concentration of galanin has been found in the dorsal cardiovascular centers, particularly in the nucleus tractus solitarii of rat medulla oblongata.4 Härfstrand et al5 have observed that intracisternally injected galanin in the nanomolar range induced a significant hypotension in anesthetized rats and further reported that the combined treatment of galanin with neuropeptide Y resulted in a more prolonged hypotensive action. In several areas, galanin has been shown to coexist with other peptides or amines, such as γ-aminobutyric acid, norepinephrine, dopamine, serotonin, and acetylcholine.6–9 In many cases, the presence of coexisting peptides is believed to influence the release of classic neurotransmitters, although little is understood about the interactions between galanin and these transmitters at either presynaptic and postsynaptic sites. Nordström et al6 have reported that galanin significantly inhibits dopamine release from the rat median eminence and proposed that this peptide could act as a dopaminergic neuromodulator in this region. Fisone et al6 have found that galanin inhibits acetylcholine release in the ventral hippocampus of the rat both in vivo and in vitro. Recently, our colleagues have demonstrated that noradrenergic neurons containing galanin in locus coeruleus preferentially project to the hypothalamus, cerebral cortex, brain stem, and spinal cord of rats.9 Additionally, we have reported that galanin reduced the

From the Division of Cardiology (K.T., I.N., Y.M.), Department of Medicine and the Third Department of Medicine (S.T.), Wakayama Medical College, Wakayama, Japan, and Neurochemistry Research Laboratories (M.G.), New York University Medical Center, New York.

Address for correspondence: Kazushi Tsuda, MD, Division of Cardiology, Department of Medicine, Wakayama Medical College, 27,1-Bancho, Wakayama 640, Japan.

Received December 10, 1991; accepted in revised form May 15, 1992.
It is now well known that the α2-adrenergic receptors are coupled with the inhibitory guanosine triphosphate (GTP)-binding protein (G protein), which participates in the receptor-mediated transmembrane signaling by modulating adenylate cyclase activity. Pertussis toxin (islet activating protein) has been reported to inactivate the G protein by adenosine diphosphate (ADP) ribosylation of the α subunit, and this toxin has been widely used to determine the involvement of the G protein in the receptor-mediated inhibition of adenylate cyclase or in the overall cellular responses elicited by activation of the receptors.

The presence of a high density of galanin in the nucleus tractus solitarii may support the idea that the peptide has a modulatory action on catecholamine release in this region and has a significant role in cardiovascular regulations. In the present study, to gain further insight into the regulatory mechanisms of galanin on central sympathetic nervous activity, we investigated the influences of galanin on norepinephrine release in rat medulla oblongata and further examined the effects of the α2-adrenergic agonist and antagonist as well as the effects of inactivation of the G protein by pertussis toxin on the modulation of norepinephrine release in this region. In the second series of the experiments to test the possibility of abnormal peptide regulation of central norepinephrine release in hypertension, we studied whether galanin-mediated regulation of norepinephrine release might be altered in the medulla oblongata of spontaneously hypertensive rats (SHR).

Methods

Animals

Male Sprague-Dawley (SD) rats (weight, 200–250 g) from Taconic Farms, Germantown, N.Y., were used for the fundamental investigation of the effects of galanin in rat medulla oblongata. Male SHR (9–10 weeks old; Taconic Farms) were studied in comparison with age-matched male Wistar-Kyoto (WKY) rats (Taconic Farms). The body weight of the SHR was 197.5±2.0 g (n=6), mean±SEM) and that of WKY rats was 201.7±2.7 g (n=6). Systolic blood pressure, which was measured by the tail-cuff method (programmed electro-sphygmomanometer, model PE-300, Narco BioSystems Inc., Austin, Tex.), was 177.3±3.5 mm Hg in SHR (n=6) and 114.7±6.2 mm Hg in WKY rats (n=6).

Drugs

The α2-agonist 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline (UK 14,304) and clonidine were received from Pfizer Inc., New York, and Boehringer Ingelheim KG, Ingelheim, Germany, respectively. The α2-antagonist, 2-(3-benzodioxanyl-2-imidazolin HCl (RX 781094) was received from RPI Corp., Mt. Prospect, Ill. Galanin was donated by Dr. David Schlesinger (Cell Biology and Kaplan Cancer Center, New York University Medical Center, New York). Purified pertussis toxin (islet activating protein) was purchased from List Biological Laboratories Inc., Campbell, Calif. All other drugs used were standard laboratory reagents of analytical grade.

Experimental Procedure

The rats were decapitated, and the whole medulla oblongata was rapidly dissected on ice according to the method described previously. The frontal section was cut from the level of the nucleus nervi facialis to the pyramidal decussation. The isolated medulla oblongata was sliced at 0.3-mm thickness with a tissue chopper (Brinkmann Instruments, Inc., Westbury, N.Y.), rotated 90°, and sliced again (0.3×0.3 mm). The sliced tissues were washed three times with 2 ml Krebs-Ringer bicarbonate buffer (in mM: NaCl 118.0, KCl 4.80, CaCl 2 1.20, KH2PO4 1.15, MgSO4 1.20, NaHCO3 25.0, glucose 11.1, ascorbic acid 0.11, and disodium EDTA 0.4 saturated with a 95% O2–5% CO2 mixture at 37°C, pH 7.4). The slices were incubated with 100 µl Krebs-Ringer bicarbonate buffer (10 µl of each, 3 mg/ml galanin) in a superfusion chamber (volume 200 µl), jacketed with 37°C water and suspended between two platinum electrodes (25 mm apart, 2 mm long). The slices were superfused with Krebs-Ringer bicarbonate buffer at a rate of 0.7 ml/min. The superfuse was collected after 60 minutes of superfusion when basal outflow of tritium had stabilized to a constant level. Samples of superfuse were collected at 7-minute intervals until the end of the experiment (at 130 minutes). For electrical stimulation, trains of unipolar and rectangular pulses (1 Hz, 20 mA, 2-msec duration for 2 minutes) were delivered with a stimulator (model S4K, Grass Instrument Co., Quincy, Mass.). The electrical stimulation was applied at 67 minutes (S1) and 116 minutes (S2) after the beginning of the superfusion. At the end of the experiment, the slices were solubilized by sonication for 20 seconds. Radioactivity in the collected samples and solubilized tissues was determined by liquid scintillation spectrometry (Packard Tri-carb Liquid Scintillation Spectrometer, model 3255, Packard Instrument Co., Sterling, Va.).

The amount of tritium released in each sample was calculated by dividing the total tritium collected in each sample by the total tritium present in the tissue at the time of the sample collection (the tritium released into superfuse after that point plus the tritium remaining in the tissue at the end of the experiment) and was expressed as a percentage of fractional release. Basal overflow during the two prestimulation periods (b1 and b2, respectively) was evaluated from the tritium collected in the two 7-minute samples just before S1 and S2. The overflow of tritium evoked by nerve stimulation was calculated by subtracting the basal overflow during the 7-minute prestimulation period from the value in samples collected during the 2-minute stimulation period and 5 minutes after the electrical stimulation (total 7 minutes). The tritium content of the first fraction collected ranged consistently from 5,000 to 7,000 disintegrations per minute and the tritium remaining in the
TABLE 1. Inhibitory Effects of Galanin, UK 14,304, and Clonidine on [3H]Norepinephrine Release in Medulla Oblongata of Sprague-Dawley Rats

<table>
<thead>
<tr>
<th>Drugs added before S2</th>
<th>Fractional Release (%)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td>S2/S1</td>
<td>b2/bl</td>
</tr>
<tr>
<td>Control (n=6)</td>
<td>1.230±0.035</td>
<td>1.146±0.025</td>
<td>0.937±0.043</td>
<td>0.785±0.012</td>
</tr>
<tr>
<td>Gal 1×10⁻⁸ M (n=6)</td>
<td>1.298±0.023</td>
<td>1.136±0.023</td>
<td>0.883±0.025</td>
<td>0.800±0.009</td>
</tr>
<tr>
<td>Gal 1×10⁻⁷ M (n=6)</td>
<td>1.245±0.041</td>
<td>0.622±0.051*</td>
<td>0.501±0.037*</td>
<td>0.796±0.013</td>
</tr>
<tr>
<td>Gal 1×10⁻⁶ M (n=6)</td>
<td>1.244±0.061</td>
<td>0.367±0.021*</td>
<td>0.299±0.018*</td>
<td>0.805±0.012</td>
</tr>
<tr>
<td>UK 1×10⁻⁶ M (n=5)</td>
<td>1.215±0.044</td>
<td>0.739±0.073*</td>
<td>0.607±0.046*</td>
<td>0.809±0.018</td>
</tr>
<tr>
<td>UK 1×10⁻⁷ M (n=6)</td>
<td>1.269±0.047</td>
<td>0.451±0.025*</td>
<td>0.357±0.020*</td>
<td>0.778±0.018</td>
</tr>
<tr>
<td>UK 1×10⁻⁸ M+Gal 1×10⁻⁴ M (n=8)</td>
<td>1.205±0.048</td>
<td>0.191±0.034*</td>
<td>0.157±0.027**</td>
<td>0.809±0.004</td>
</tr>
<tr>
<td>Clon 1×10⁻⁶ M (n=5)</td>
<td>1.192±0.075</td>
<td>1.102±0.083</td>
<td>0.918±0.029</td>
<td>0.780±0.007</td>
</tr>
<tr>
<td>Clon 1×10⁻⁷ M (n=5)</td>
<td>1.178±0.047</td>
<td>0.615±0.029*</td>
<td>0.514±0.034*</td>
<td>0.800±0.011</td>
</tr>
<tr>
<td>Clon 1×10⁻⁸ M+Gal 1×10⁻⁴ M (n=7)</td>
<td>1.201±0.053</td>
<td>0.137±0.048*</td>
<td>0.109±0.035*</td>
<td>0.799±0.027</td>
</tr>
</tbody>
</table>

Slices were electrically stimulated (at S1 and S2) at 1 Hz (20 mA, unipolar rectangular pulses for 2-msec duration for 2 minutes). Galanin (Gal), UK 14,304 (UK), and clonidine (Clon) were added 14 minutes before S2. Fractional release during S1 and S2 were calculated by subtracting basal outflow from the total outflow of tritium during stimulation period (2-minute stimulation and after 5 minutes) and is expressed as percentage of the tritium content of the tissue at the onset of stimulation. S1, first electrical stimulation; S2, second electrical stimulation; b1, prestimulation period before S1; b2, prestimulation period before S2; S2/S1, fractional release ratio during S2 and S1; b2/b1, fractional release ratio during b2 and b1. Data are represented as mean±SEM.

*p<0.05 compared with the corresponding control.

fps<0.05 compared with the experiment of UK 14,304 (1×10⁻⁸ M) or clonidine (1×10⁻⁸ M) alone.

Statistics

Values are expressed as mean±SEM. Differences between the means of the drug treatment and their corresponding controls were determined by one-way analysis of variance (ANOVA). To compare the means of the different study groups, the Wilcoxon rank-sum test was used. To examine the differences between SHR and WKY rats, statistical analyses were performed with the two-way ANOVA. A value of p<0.05 was accepted as the level of significance.

Results

Effects of Galanin Alone and in Combination With UK 14,304, Clonidine, and RX 781094 on the Tritiated Norepinephrine Release in Medulla Oblongata of Sprague-Dawley Rats

In the control experiments, the stimulation-evoked [3H]norepinephrine release in S1 and S2 does not differ significantly (S2/S1 ratio, 0.937±0.043, n=6). Table 1 shows the effects of galanin on the release of [3H]norepinephrine in slices of medulla oblongata of SD rats. Galanin strongly inhibited the stimulation-evoked [3H]norepinephrine release in a concentration-dependent manner (IC₅₀ value, 1.5±0.4×10⁻⁷ M, n=6), although the basal release of [3H]norepinephrine was not changed by these concentrations of the peptide.

To evaluate whether α₂-adrenergic receptors are associated with the inhibitory action of galanin, we studied the effects of galanin in combination with UK 14,304, clonidine, and RX 781094. The inhibition of the stimulation-evoked [3H]norepinephrine release was potentiated by the low concentration of galanin (1×10⁻⁸ M) (Table 1). In a separate experiment, we examined the effects of α₂-adrenergic receptor antagonist (RX 781094) on the inhibition of [3H]norepinephrine release by galanin. Exposure of

Statistically significant differences were determined by ANOVA.
FIGURE 1. Line graph shows effects of galanin (Gal) on stimulation-evoked \[^{3}\text{H}\]\text{norepinephrine} release in the presence of an \(\alpha_{2}\)-adrenergic receptor antagonist, RX 781094 (10\(^{-8}\) M). RX 781094 was added to the superfusion medium 28 minutes before SI and maintained until the end of the experiment.

Values are mean±SEM.

Effects of Pertussis Toxin on the Inhibition of Tritiated Norepinephrine Release by Galanin and UK 14,304 in Medulla Oblongata of Sprague-Dawley Rats

The \(\alpha_{2}\)-adrenergic receptors are negatively linked to adenylate cyclase via the G protein. We therefore examined whether the inactivation of the G protein by pertussis toxin may alter the inhibitory action of galanin on the stimulation-evoked \[^{3}\text{H}\]\text{norepinephrine} release. The fractional release of \[^{3}\text{H}\]\text{norepinephrine} release during electrical stimulation was not changed by the treatment of pertussis toxin. However, the inhibitory effect of galanin on \[^{3}\text{H}\]\text{norepinephrine} release was significantly attenuated in slices pretreated with pertussis toxin (Table 2). Similarly, the inhibitory action of UK 14,304 on \[^{3}\text{H}\]\text{norepinephrine} release was also reduced in the pertussis toxin-treated slices (Table 2).

Effects of Galanin on Tritiated Norepinephrine Release in Medulla Oblongata of Spontaneously Hypertensive Rats and Wistar-Kyoto Rats

The stimulation-evoked \[^{3}\text{H}\]\text{norepinephrine} release from slices of medulla oblongata was not significantly different between SHR and WKY rats (percent fractional release during SI: SHR, 1.239±0.033%; total tissue radioactivity, n=6; WKY, 1.396±0.063%, n=6). The basal release of tritium also did not differ between SHR and WKY rats (percent fractional release during bl: SHR, 2.798±0.034%; total tissue radioactivity, n=6; WKY, 2.661±0.029%, n=6).

As shown in Figure 2, galanin significantly reduced the stimulation-evoked \[^{3}\text{H}\]\text{norepinephrine} release both in SHR and WKY rats. The suppression by galanin was significantly more attenuated in SHR than in WKY rats (S2/S1 ratio: galanin 1×10\(^{-7}\) M: SHR, 0.883±0.050, n=6; WKY, 0.534±0.010, n=6, p<0.05; galanin 1×10\(^{-6}\) M: SHR, 0.542±0.013, n=6; WKY, 0.217±0.019, n=6, p<0.05).

Discussion

Galanin is colocalized with classic neurotransmitters such as norepinephrine, dopamine, or acetylcholine in specific neuronal systems in the brain.\(^2\)-\(^9\) We therefore investigated the effects of galanin on norepinephrine release and its interactions with \(\alpha_{2}\)-adrenergic receptors in rat medulla oblongata. The results of the present study demonstrate that galanin inhibited the stimula-

Table 2. Effects of Pertussis Toxin on Galanin-Induced and UK 14,304-Induced Reduction in Stimulation (1 Hz)-Evoked \[^{3}\text{H}\]Norepinephrine Release in Medulla Oblongata of Sprague-Dawley Rats

<table>
<thead>
<tr>
<th>Drugs added before S2</th>
<th>S1 Fractional release (%)</th>
<th>S2 Fractional release (%)</th>
<th>S2/S1 Fractional release (%)</th>
<th>b2/bl Fractional release (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertussis toxin (+)</td>
<td>1.338±0.103</td>
<td>1.298±0.127</td>
<td>0.967±0.031</td>
<td>0.782±0.033</td>
</tr>
<tr>
<td>Control (n=6)</td>
<td>Gal 1×10(^{-7}) M (n=6)</td>
<td>1.348±0.027</td>
<td>1.132±0.031*</td>
<td>0.841±0.035*</td>
</tr>
<tr>
<td>Gal 1×10(^{-6}) M (n=6)</td>
<td>1.372±0.085</td>
<td>0.779±0.053*</td>
<td>0.572±0.023*†</td>
<td>0.497±0.040*†</td>
</tr>
<tr>
<td>UK 1×10(^{-4}) M (n=6)</td>
<td>1.200±0.049</td>
<td>0.578±0.029**†</td>
<td>0.497±0.040*†</td>
<td>0.809±0.011</td>
</tr>
</tbody>
</table>

Slices were pretreated with pertussis toxin (8 \(\mu\)g/ml), incubated with \[^{3}\text{H}\]norepinephrine, and superfused as described in text. Effects of galanin (Gal) and UK 14,304 (UK) were expressed as S2/S1 ratios of tritium overflow evoked by the two stimulation periods. S1, first electrical stimulation; S2, second electrical stimulation; b1, prestimulation period before S1; b2, prestimulation period before S2; S2/S1, fractional release ratio during S2 and S1; b2/b1, fractional release ratio during b2 and b1. Values are mean±SEM.

*p<0.05 compared with the experiments in the presence of same concentrations of galanin or UK 14,304 alone.

\†p<0.05 compared with the corresponding control.
by guest on May 2, 2017

by galanin might be, at least in part, mediated by the inhibition effects of UK 14,304 and clonidine. This suggests that the inhibition of [3H]norepinephrine release by galanin was further suggested by the evidence that galanin-induced feeding behavior in rats depended specifically on functional α2-receptor sites. It was also shown that the effects of galanin on the release of luteinizing hormone releasing hormone in rat brain was blocked by phentolamine.

The signal transduction system via the α2-adrenergic receptors is believed to be linked to the Gs protein of the membranes. Pertussis toxin inactivates the Gs protein by ADP-ribosylation of the α subunit and has been used to determine the involvement of the Gs protein in the receptor-mediated inhibition of adenylate cyclase. It has been reported that the present study shows that galanin-induced decrease in [3H]norepinephrine release was significantly attenuated in the slices pretreated with pertussis toxin. This finding indicates that the inhibitory modulation of [3H]norepinephrine release by galanin might be, in part, mediated by the coupling of the receptor by means of the Gs protein. Nishibori et al. reported that galanin inhibited the accumulation of cyclic adenosine monophosphate content in rat cerebral cortex. In receptor binding studies, it was shown that 125I-galanin binding sites in rat brain were affected by GTP and its analogues and by pertussis toxin-catalyzed ADP-ribosylation, which suggests that galanin receptor is coupled to an inhibitory Gs protein in the central nervous system. However, it remains to be elucidated whether galanin can interact with only the α2-adrenergic receptor-activated Gs protein or with other coupling proteins.

Our results also showed that the inhibition of norepinephrine release by galanin was significantly attenuated in the medulla oblongata of SHR compared with age-matched WKY rats. The mechanisms responsible for impaired suppression of norepinephrine release by galanin are still uncertain. It has been reported that there was a specific decrease in the density of [3H]clonidine binding sites or [3H]yohimbine binding sites in the medulla oblongata of SHR. In agreement with these previous observations, we have reported that the α2-agonist (UK 14,304)–induced inhibition of stimulation-evoked [3H]norepinephrine release was significantly less in the slices of medulla oblongata from SHR than in those from WKY rats. Thus, less inhibitory effects of galanin on norepinephrine release can be partially explained by the finding that the α2-adrenergic receptor function is decreased in the medulla oblongata of SHR, although further studies are required to assess properly the interactions of galanin with α2-adrenergic receptors and their role in the regulation of norepinephrine release in the central nervous system of SHR.

It has been shown that galanin-like immunoreactivity-containing cell bodies in the brain also contain immunoactivity of substance P or calcitonin gene-related peptide. Recently, alterations in regional contents of peptide hormones such as calcitonin gene-related peptide or neuropeptide Y have been demonstrated in the brain of SHR compared with WKY rats, although there are no studies evaluating whether the galanin content might be changed in central nervous system of...

FIGURE 2. Bar graph demonstrates effects of galanin (Gal) on stimulation (1 Hz)-evoked [3H]norepinephrine release in medulla oblongata of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. Effects of galanin (1×10^-7 M and 1×10^-6 M) were expressed as S2/S1 ratios of tritium overflow evoked by the two stimulation periods. Galanin was added to the superfusion medium 14 minutes before S2 and maintained until the end of the experiment. Values are mean±SEM.
hypothesis. It would be possible that the quantitative
abnormality might cause less sensitivity to exogenously
applied galanin in medulla oblongata of SHR.

In summary, the results of the present study demon-
strate that galanin inhibited stimulation-evoked norepi-
nephrine release in rat medulla oblongata, and that a
part of the mechanisms can be explained by the inter-
actions with presynaptic α2-adrenergic receptors and
the pertussis toxin-sensitive GTP-binding proteins in
this region. Although the precise role of galanin in
the pathogenesis of hypertension is still uncertain, the
impaired modulation of norepinephrine release by galanin
in medulla oblongata of SHR suggests the possible
involvement of the peptide in the regulation of central
sympathetic tone in hypertension.

References
1. Tatemoto K, Rökaeus Å, Jornvall H, McDonald TJ, Mutt V:
Galanin—a novel biologically active peptide from porcine in-
2. Rökaeus Å, Galanin, a newly isolated biologically active neuropep-
3. Gentleman SM, Falkai P, Rogers B, Herrero MT, Polak JM,
Roberts GW: Distribution of galanin-like immunoreactivity in the
4. Skofitsch G, Jacobowitz DM: Quantitative distribution of galanin-
like immunoreactivity in the rat central nervous system. Peptides
1986;7:609–613
5. Härfstrand A, Fuxe K, Melander T, Hökfelt T, Agnati LF: Evi-
dence for a cardiovascular role of central galanin neurons: Focus
on interactions with α2-adrenergic and neuropeptide Y mecha-
6. Melander T, Hökfelt T, Rökaeus Å, Cuello AC, Oertel WH, Ver-
hofstad A, Goldstein M: Coexistence of galanin-like immunoreac-
tivity with catecholamines, 5-hydroxytryptamine, GABA and neu-
ropetides in the rat CNS. J Neurosci 1986;6:3640–3654
7. Nördstrom O, Melander T, Hökfelt T, Bartfai T, Goldstein M:
Evidence for an inhibitory effect of the peptide galanin on dopa-
mine release from the rat median eminence. Neurosci Lett 1987;
73:21–26
8. Fisone G, Wu CF, Consolo S, Nöstdörft O, Bryne N, Bartfai T,
Melander T, Hökfelt T: Galanin inhibits acetylcholine release in the
ventral hippocampus of the rat: Histological, autoradiographic,
in vivo, and in vitro studies. Proc Natl Acad Sci USA 1987;84:
7339–7343
9. Holts VR, Hökfelt T, Rökaeus Å, Terenius L, Goldstein M:
Locus coeruleus neurons in the rat containing neuropeptide Y,
tyrosine hydroxylase or galanin and their efferent projections to
the spinal cord, cerebral cortex and hypothalamus. Neuroscience
1988;24:893–906
10. Goldstein M, Deucht AY: The inhibitory actions of NPY and
galanin on 3H-norepinephrine release in the central nervous sys-
tem: Relation to a proposed hierarchy of neuronal coexistence, in
Mutt V, Fuxe K, Hökfelt T, Lundberg JM (eds): Karolinska Insti-
tute Nobel Conference Series. Neuropeptide Y. New York, Raven
11. Gilman AG: G proteins: Transducers of receptor-generated sig-
Pharmacol 1985;5(suppl 6):S109–S112
13. Katada T, Ui M: Islet activating protein: A modifier of receptor-
mediated regulation of rat islet adenylate cyclase. J Biol Chem
1981;256:8310–8317
14. Wreggett KA: Bacterial toxins and the role of ADP-ribosylation.
J Recept Res 1986;6:95–126
15. Sauter A, Lew JY, Baba Y, Goldstein M: Effect of phenylethanol-
amine-N-methyltransferase and dopamine-β-hydroxylase inhibi-
tion on epinephrine levels in the brain. Life Sci 1977;21:261–266
16. Franklyuhen AL, Mulder A: A cumulative dose-response tech-
nique for the characterization of presynaptic receptors modulating
3H-noradrenaline release from rat brain slices. Eur J Pharmacol
1982;78:91–97
17. Rökaeus Å, Melander T, Hökfelt T, Lundberg JM, Tatemoto K,
Carlquist M, Mutt V: A galanin-like peptide in the central nervous
18. Ryzkouli SE, Stanley BG, Huchinson R, Seirafi RD, Leibowitz SF:
Peptide-amine interactions in the hypothalamic paraventricular
nucleus: Analysis of galanin and neuropeptide Y in relation to feed-
19. Lopez FJ, Negro-Vilar A: Galanin stimulates LHRH secretion from
arcuate nuclei-medial eminence fragments in vitro: Involvement
of an α-adrenergic mechanism. (abstract) Soc Neurosci 1989;
15:1339
20. Nishibori M, Oishi R, Ino Y, Saito K: Galanin inhibits norex-
adrenaline-induced accumulation of cyclic AMP in the rat cerebra-
T, Lindén A, Andell S, Bartfai T: Galanin receptor and its ligands
22. Yamada S, Ashizawa N, Nakayama K, Tomita T, Hayashi E:
Decreased density of α-adrenoceptors in medulla oblongata of
440–446
23. Nomura M, Ohtsuji M, Nagata Y: Changes in the α-
adrenoceptors in the medulla oblongata including nucleus tractus
10:1143–1154
release and neuropeptide Y in medulla oblongata of spontaneously
25. Lewis SJ, Shulkes A, Bodsworth B, Jarrott B: Regional brain
concentrations of calcitonin gene-related peptide in spontaneously
26. MacCarron C, Jarrott B: Differences in regional brain concentra-
tions of neuropeptide Y in spontaneously hypertensive (SH) and
Modulation of norepinephrine release by galanin in rat medulla oblongata.
K Tsuda, S Tsuda, I Nishio, Y Masuyama and M Goldstein

Hypertension. 1992;20:361-366
doi: 10.1161/01.HYP.20.3.361

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1992 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/20/3/361

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Hypertension_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Hypertension_ is online at:
http://hyper.ahajournals.org/subscriptions/