Alterations in Renal Endothelin-1 Production in the Spontaneously Hypertensive Rat

Alisa K. Hughes, Richard C. Cline, and Donald E. Kohan

Endothelin-1 inhibits sodium and water transport systems in the inner medullary collecting duct. Endothelin-1 levels are reduced in the medulla of spontaneously hypertensive rats (SHR), raising the possibility that decreased inner medullary collecting duct production of endothelin-1 could contribute to inappropriate sodium and water retention. In the current study, immunoreactive endothelin-1 was measured in the urine, blood, and eluates from cortex and outer and inner medulla of SHR before (age 3–4 weeks) and after (age 8–9 weeks) the development of hypertension and in age-matched Wistar-Kyoto (WKY) controls. There was no difference in endothelin-1 levels between prehypertensive SHR and WKY rats. In contrast, 8–9-week-old SHR had significantly reduced endothelin-1 in the urine and outer and inner medulla, but not in the cortex or serum compared with those of WKY controls. Furthermore, inner medullary collecting duct cells from 8–9-week-old SHR, either acutely isolated or cultured, released less endothelin-1 than did those from WKY rats. Finally, the level of endothelin-1 messenger RNA was only reduced in the inner medulla and in inner medullary collecting duct cells from 8–9-week-old SHR. In summary, renal medullary, and in particular terminal collecting duct, endothelin-1 production is reduced in SHR only after the development of hypertension. Such decreases in inner medullary collecting duct endothelin-1 production may contribute to the hypertensive state in SHR.

KEY WORDS • kidney • hypertension, renal • RNA • kidney tubules, collecting

Endothelin-1 (ET-1) was originally characterized as a potent vasoconstrictor produced by vascular endothelial cells. Subsequently, ET-1 has been demonstrated to modulate blood pressure and extracellular fluid volume by exerting a broad range of actions on multiple tissues. Since the kidney is central to the regulation of systemic hemodynamics, it is not surprising that ET-1 has been shown to affect several aspects of renal function. ET-1 reduces renal blood flow and glomerular filtration rate, inhibits renin release, and causes a natriuresis and diuresis. These renal actions of ET-1, however, clearly do not cause the same biological responses. For instance, ET-1-induced vasoconstriction reduces glomerular filtration rate, thereby reducing sodium and water excretion, and ET-1 directly inhibits sodium and water reabsorption by the collecting duct. The reasons for this apparent lack of coordinate effects of ET-1 are unknown; however, it probably reflects the independent actions of locally produced ET-1. At least two such locally acting systems exist for ET-1 in the kidney. The first, that of endothelial cell–derived ET-1 modulation of vascular smooth muscle tone, may play a role in the pathogenesis of hypertension. For example, spontaneously hypertensive rats (SHR) exhibit greater renal vasoconstriction in response to exogenous ET-1 compared with that in normotensive Wistar-Kyoto (WKY) controls. The second locally acting ET-1 system is not as well characterized, but may also be an important mediator of renal function. This latter system involves nephron-derived ET-1 autocrine regulation of sodium and water excretion. Initial studies on in vivo localization of ET-1 determined that the renal medulla contained the greatest concentration of ET-1 as detected by radioimmunoassay or immunoperoxidase staining. Subsequently, it has been determined that the inner medullary collecting duct (IMCD) synthesizes ET-1 in amounts that are greater than any other tubule segment and comparable to endothelial cells. IMCD cells contain high affinity, high density receptors for ET-1, activation of which results in inhibition of Na,K-ATPase activity and reduced arginine vasopressin (AVP)–stimulated osmotic water permeability. Thus, ET-1 can function as an autocrine regulator of sodium and water transport by the IMCD and possibly, to a lesser extent, by other nephron segments. The role that nephron-derived ET-1 plays in the pathogenesis of renal dysfunction is unknown; however, recent studies suggest that alterations in this system may occur in some forms of hypertension. Kitamura et al noted that the renal medulla of SHR contained 20% of the ET-1 seen in the renal medulla of normotensive WKY control rats. This finding probably did not reflect less circulating ET-1 in SHR since the serum levels of ET-1 are comparable between the two species. In addition, patients with essential hypertension excrete significantly less ET-1 in their urine compared with normotensive patients. Since urinary

From the Division of Nephrology, Veterans Administration Medical Center and the University of Utah School of Medicine, Salt Lake City, Utah.

Supported in part by a Merit Review from the Department of Veterans Affairs (D.E.K.) and by grant DK-44440 from the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md.

Address for correspondence: Donald E. Kohan, MD, PhD, Division of Nephrology, University of Utah Medical Center, 50 North Medical Drive, Salt Lake City, UT 84132.

Received April 24, 1992; accepted in revised form July 7, 1992.
ET-1 excretion is believed to reflect renal production of ET-1, these findings also suggest that renal production of ET-1 is reduced in the setting of hypertension. Such a decrease in nephron ET-1 production could theoretically lead to reduced autocrine inhibition of sodium and water reabsorption and potentially contribute to the development or maintenance of the hypertensive state. The current studies were undertaken, therefore, to directly determine if renal ET-1 production is altered in hypertension. Using the SHR as a model, renal production of immunoreactive ET-1 and ET-1 messenger RNA (mRNA) were assessed before and after the development of hypertension in SHR and in age-matched WKY controls. We report that ET-1 synthesis is markedly lower in the kidney of hypertensive rats, that the IMCD cell is the primary site of this reduced ET-1 production, and that such changes occur only after the development of hypertension.

Methods

Blood Pressure Measurements

Arterial blood pressure was measured in male SHR and WKY rats (Harlan Sprague Dawley, Madison, Wis.), aged 3–4 and 8–9 weeks. Rats were placed in a restraining box and warmed until a pulse was detected in the tail. Systolic pressure was assessed using a tail-cuff and pressure transducer in conjunction with an automated pressure delivery system and chart recorder (Narco BioSystems, Austin, Tex.).

Tissue Isolation and Culture

For cultured IMCD cell studies, 3–4- and 8–9-week-old SHR and WKY rats were killed and the kidneys immediately removed. IMCD cells were isolated as previously described. The inner medulla was dissected out, finely minced, and incubated in 0.1% collagenase (type II, Worthington Diagnostics Systems, Freehold, N.J.) and 0.01% deoxyribonuclease (type I, Sigma Chemical Co., St. Louis, Mo.) in Krebs buffer for 1 hour at 37°C. The deoxyribonuclease was added to reduce cell clumping. Distilled water was added to give an osmolality of 120 mosm, a procedure shown to disrupt all cells except those of the collecting duct. The cells were washed in phosphate-buffered saline containing 10% albumin and suspended in modified medium K1 (50:50; Dulbecco's modified Eagle media:Ham's F12 containing 5 μg/ml insulin, 5 μg/ml transferrin, 5 ng/ml selenium, 50 nM hydrocortisone, and 25 ng/ml prostaglandin E1). All studies were performed at confluence, approximately 6–8 days after initial plating. At confluence, IMCD cell cultures are free of endothelial cells, as determined by immunofluorescence for factor VIII-related antigen.

IMCD cell function was also examined immediately after isolation from other medullary components. A different isolation technique than the one used for obtaining IMCD cells for culture had to be used. As previously observed by Stokes and coworkers, the hypotonic lysis used to disrupt noncollecting duct cells results in a temporary loss of normal IMCD cell function and therefore precludes the use of this technique in studying acutely isolated cell behavior. Accordingly, a modification of the technique originally described by these investigators was used. The inner medulla of 3–4- and 8–9-week-old SHR and WKY rats was removed, finely minced, and incubated in 0.2% collagenase (type II, Worthington) and 0.2% hyaluronidase in Krebs buffer in a 37°C water bath that was constantly gassed with air. After 45 minutes, 0.01% deoxyribonuclease was added to reduce cell clumping. The incubation was continued and the cells aspirated 5–7 times through a pipette every 15 minutes until a suspension of predominantly cells and single tubules was obtained (approximately 90 minutes from the beginning of the incubation). The cells were centrifuged at 350 rpm for 2 minutes, the supernatant discarded, and the cells resuspended in Krebs buffer. This low speed centrifugation was repeated two more times, and the pellet was either suspended in guanidinium thiocyanate (GITC) for isolation and quantitation of RNA or placed in phenol red–free Dulbecco's modified Eagle media (PRF-DMEM, Gibco, Grand Island, N.Y.) for measurement of ET-1 release (see below).

In another series of experiments, cortex, outer medulla, and inner medulla of 3–4- and 8–9-week-old SHR and WKY rats were acutely isolated for measurement of mRNA or ET-1 production. Animals were killed and the kidneys immediately removed. For mRNA studies, the cortex, outer medulla, and inner medulla were dissected out, snap-frozen in liquid nitrogen, and then transferred to GITC and immediately homogenized. For ET-1 release studies, the cortex, outer medulla, and inner medulla were dissected out, minced until no pieces larger than 1 mm remained, and placed into separate tubes containing PRF-DMEM as described below.

Measurement of Immunoreactive Endothelin-1

The following tissues and cells from 3–4- and 8–9-week-old SHR and WKY rats were analyzed for ET-1 release: 1) acutely isolated and minced cortex, inner medulla, and outer medulla; 2) acutely isolated and enzyme-purified IMCD cells; and 3) cultured IMCD cells. Each of these tissues were incubated with PRF-DMEM for 6 hours at 37°C in a 5% CO2 environment. PRF-DMEM was used since phenol red interferes with ET-1 extraction. At the end of the incubation, the supernatant was discarded, and the cells were rinsed in 70% MeOH/0.1% TFA, then 40% MeOH/0.1% TFA, and endothelin eluted with 70% MeOH/0.1% Triton X-305. The eluate was dried and suspended in radioimmunoassay (RIA) buffer. This procedure resulted in recovery of 85±8% (n=4) of 128 pg and 81±9% (n=4) of 8 pg ET-1 standards added to 2 ml incubation media.

ET-1 was measured using a kit purchased from Peninsula Laboratories, Inc., Belmont, Calif., as previously described. Standards or samples in RIA buffer were incubated with rabbit anti–ET-1 antibody (1:20,000 dilution of sera) overnight at 40°C.
day 32P-ET-1 (10,000–15,000 cpm) was added and incubated overnight at 4°C. The next morning goat anti-rabbit globulin and normal rabbit serum were added, the precipitate centrifuged, and counts per minute determined on a Micromedic 4/600 gamma counter. The lower limit of sensitivity for ET-1 detection was 2 pg. Intra-assay variation was less than 9%; interassay variation was less than 15%. Competitive binding inhibition curves for ET-1 antibody showed less than 5% cross-reactivity with unlabeled endothelin-3 and less than 3% cross-reactivity with unlabeled endothelin-2. Reactivity with big endothelin has not been evaluated.

All cells from which supernatants were obtained for ET-1 measurement were analyzed for total protein content. Cells were solubilized with 0.1N NaOH, an aliquot was removed and mixed with Bradford reagent (Bio-Rad, Richmond, Calif.), and absorbance at 590 nm was determined.19

Isolation of RNA

RNA was obtained from acutely isolated renal cortex, outer medulla, and inner medulla; acutely isolated IMCD cells; and cultured IMCD cells from 3-4- and 8-9-week-old SHR and WKY rats. As described above, cortex, outer medulla, and inner medulla were snap-frozen and placed in GITC; acutely isolated IMCD cells were centrifuged and placed in GITC; and cultured IMCD cells were overlayed with GITC. The GITC solution contained 4 M GITC, 25 mM sodium citrate, 1% β-mercaptoethanol, and 1% sarcosyl (pH 7.0). After homogenization, each sample was subjected to cesium chloride density gradient centrifugation. The RNA pellet was washed in 70% ethanol, chloroform extracted, and ethanol precipitated. The integrity of each RNA sample was verified by agarose/formaldehyde gel electrophoresis and quantified spectrophotometrically.

Quantitation of RNA

Total RNA (2.5 μg) from each sample was reverse transcribed by incubating with 100 pmol/μl random hexamers (Boehringer), 4 mM MgCl₂, 10 units/μl murine Maloney Leukemia Virus reverse transcriptase (Gibco), 2 units/ml RNAsin (Promega), 500 μM deoxynucleotide triphosphates (dNTP, Perkin-Elmer), 1 mM dithiothreitol, 50 mM KCl, 10 mM Tris-Cl, and 0.01% nucleotide triphosphates (dNTP, Perkin-Elmer), 1 mM reverse transcriptase was inactivated by heating for 5 minutes at 95°C. The resultant complementary DNA (cDNA) was stored at −20°C for up to 1 month. PCR of rat genomic DNA yielded a 1,300-base pair product, indicating that this primer set also spans an intron. PCR was performed by incubating 5 μl (approximately 0.25 μg) of sample cDNA with 50 mM KCl, 10 mM Tris-Cl, 0.01% gelatin, 1.5 mM MgCl₂, 2.5% formamide, 2 units Thermus aquaticus (Taq) polymerase (Boehringer), 200 μM dNTP, 100 pmol of B-actin or ET-1 primers, and 1 μCi 32P-dCTP (Amersham) in 50 μl final volume (final pH 8.3 at room temperature). PCR using B-actin primers was carried out for 25 cycles (15 seconds at 94°C, 15 seconds at 65°C, 30 seconds at 72°C) using a Perkin-Elmer Cetus 9600 GeneAmp System. PCR using ET-1 primers was carried out for 30 cycles under identical conditions. ET-1 and B-actin primers were never combined in the same tube. Twenty microliters of the final PCR reaction was electrophoresed using a 1% ME agarose gel containing 1 μg/ml ethidium bromide. The bands corresponding to the cDNA product were excised, mixed with scintillation cocktail, and counts per minute determined on a Beckman beta counter.

ET-1 and B-actin cDNA obtained from PCR of reverse-transcribed RNA were used to generate standard curves. The cDNA was amplified by PCR, and the resultant amplified product was divided into small fractions that were, in turn, reamplified. The purity of the final product was confirmed by electrophoresis. If a single band of the appropriate size was obtained, the final product was cleaned using Magic PCR Prep (Promega) to remove the primers. The cleaned product was again electrophoresed to confirm that it contained only the desired cDNA. If pure, the cDNA was quantitated spectrophotometrically. Standard curves for B-actin or ET-1 were made by simultaneously amplifying sample cDNA and, in separate tubes, standard cDNA (10⁻¹ to 10⁻⁷ nanograms per tube). Every PCR amplification included a standard curve.

To facilitate comparison between ages and species, each PCR amplification included samples from both 3-4- and 8-9-week-old WKY rats and SHR. A given PCR amplification always contained grouped cortex, outer medulla, inner medulla, or acutely isolated or cultured IMCD cells. To facilitate comparison between regions of the kidneys, some PCR amplifications included all regions of the kidney from 3-4- and 8-9-week-old SHR and WKY rats. However, similar results were obtained when RNA from cortex, outer medulla, and inner medulla were measured in the same or separate PCR reactions. Finally, all PCR consisted of simultaneous amplification (in separate tubes) of cDNA for ET-1 and B-actin.

All results are expressed as nanograms ET-1 cDNA/nanograms B-actin cDNA to control for the amount of RNA initially reverse transcribed.

Statistics

All data were compared by analysis of variance. Results are expressed as mean±SEM.

Materials

Insulin, transferrin, and selenium were purchased from Collaborative Research, Bedford, Mass. Unless otherwise stated, all other reagents were purchased from Sigma Chemical Co., St. Louis, Mo.

Materials
Results

SHR typically develop hypertension after 6–7 weeks of age. Consequently, SHR were studied at 3–4 weeks (before the onset of hypertension) and 8–9 weeks (after development of hypertension) of age along with normotensive WKY controls. To confirm that hypertension occurred at the predicted time, tail arterial systolic pressure was measured. Systolic blood pressure was not different between WKY (105±4 mm Hg) and SHR (110±5 mm Hg) at 3–4 weeks of age, whereas systolic blood pressure was significantly elevated in SHR (155±7 mm Hg) compared with that of WKY rats (110±4 mm Hg) at 8–9 weeks of age (n=6 in all groups).

In the first set of experiments, plasma and urine ET-1 levels in SHR and WKY rats were assessed to determine if renal ET-1 excretion was altered in hypertensive animals and if such alterations might be due to differences in the amount of circulating ET-1. As shown in Figure 1, serum ET-1 levels were not different between WKY and SHR in either age group. Urinary ET-1 excretion was also not different between WKY rats and SHR at 3–4 weeks of age (Figure 2). In contrast, urinary ET-1 excretion was significantly reduced in SHR compared with that in WKY rats at 8–9 weeks of age, suggesting that renal ET-1 production is reduced after the onset of hypertension. It is also apparent from Figure 2 that urinary ET-1 excretion increases with age. This difference cannot be accounted for solely by an increase in renal mass with aging 5 weeks since the magnitude of the increase is so large (sevenfold rise in urinary ET-1 excretion). This is further demonstrated by findings below that show a clear increase in ET-1 production per unit tissue.

To localize any renal site (or sites) of altered ET-1 production, ET-1 release by dissected and minced renal cortex, outer medulla, and inner medulla from 3–4- and 8–9-week-old SHR and WKY rats was examined. As shown in Figure 3, ET-1 release from cortex, outer medulla, and inner medulla was not different between 3–4-week-old SHR and WKY rats. The cortex of 8–9-week-old SHR and WKY rats also released similar amounts of ET-1; however, the outer and inner medulla obtained from SHR released significantly less ET-1 than the same areas of the kidney obtained from WKY rats (Figure 3). These data suggested that the outer and inner medulla contained cells that were producing less ET-1 once hypertension developed.

Since the medullary collecting duct is the predominant nephron site of ET-1 production and is confined exclusively to the areas where ET-1 production was reduced in hypertensive SHR, the production of ET-1 by collecting duct cells was examined. IMCD cells were isolated from 3–4- and 8–9-week-old SHR and WKY rats and examined for ET-1 release. Similar to medullary tissue, IMCD cells from 3–4-week-old SHR and WKY rats released small but comparable amounts of ET-1 (Figure 4). In contrast, IMCD cells freshly isolated from 8–9-week-old SHR released markedly less ET-1 than did IMCD cells from age-matched WKY rats (Figure 4). These studies suggest that the decrease in ET-1 release by the outer and inner medulla of hypertensive rats was due, at least in part, to decreased production of ET-1 by collecting duct cells. This decrease in ET-1 release could be either a result of hypertension or an intrinsic alteration in IMCD cell function. To assess IMCD cell ET-1 production independent of the immediate influence of hypertension, IMCD cells from 3–4- and 8–9-week-old SHR and WKY rats were purified and grown in culture to confluence. As before, IMCD cells obtained from 3–4-week-old SHR and WKY rats produced similar amounts of ET-1 (Figure 5). Conversely, cultured IMCD cells obtained from 8–9-week-old SHR released far less ET-1 than did cultured IMCD cells from 8–9-week-old WKY rats (Figure 5). These data suggest that IMCD cells develop an intrinsic alteration in ET-1 production that persists in the absence of exposure to the hypertensive state. Interestingly, IMCD cells from 8–9-week-old rats produced significantly more ET-1 than did the same cells from 3–4-week-old animals, regardless of strain. The mechanism (or mechanisms) by which IMCD ET-1 production increases with age is unknown but would be of interest since derangements in the factors responsible for age-related changes in ET-1
ET-1 was assessed in renal tissues from young and older SHRs by an immunoassay.

Figure 3. Bar graphs show release of immunoreactive endothelin-1 (ET-1) over 6 hours by minced cortex (panel A), outer medulla (panel B), and inner medulla (panel C) from 3-4- and 8-9-week-old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. $n=4$ each data point. *p<0.05.

ET-1 production may be relevant to understanding the alterations in ET-1 synthesis in SHR.

Although the above studies assessed immunoreactive ET-1 release by renal cells, they did not absolutely rule out the possibility that differences in ET-1 production could be due, at least in part, to alterations in ET-1 receptor number on the cells, variable binding of circulating ET-1, and subsequent different release of bound ET-1 into the media. This possibility seemed remote, particularly in view of the relative irreversibility of ET-1 binding to its receptor. Furthermore, it is highly unlikely that the differences in ET-1 production observed in the cultured IMCD cells were due to carryover of in vivo ET-1. However, to definitively show that ET-1 synthesis is altered in SHR, ET-1 mRNA was quantitated. Traditional Northern analysis and RNase protection assays were not sensitive enough to detect ET-1 mRNA in all of the tissues studied; thus a quantitative PCR method was used.

To determine the accuracy of the quantitative PCR several variables were studied. First, the reproducibility of reverse transcription was examined. Three separate reverse transcriptions of the same RNA sample, followed by PCR of the resultant cDNA (using the same ET-1 and B-actin standard curves), yielded only a 5% and a 3% variability in measured ET-1 and B-actin cDNA, respectively; the ratio of ET-1 to B-actin cDNA varied by 4%. In the second control, the reproducibility of quantitation of cDNA was evaluated. Three separate PCR amplifications, each using independently made standard curves, were performed on the same sample of cDNA. The calculated amount of ET-1 and B-actin cDNA varied by 15% and 11.5%, respectively, and the ratio of ET-1 to B-actin cDNA varied by 9%.
The results of reverse transcription and PCR of RNA from cortex and outer and inner medulla are shown in Figure 6. When care was taken to amplify by PCR the same amount of cDNA, the levels of B-actin were not significantly different between SHR and WKY rats. Thus, the ET-1/B-actin ratio reflected changes only in ET-1 mRNA. There was no significant difference in the amount of ET-1 mRNA in the inner medulla of 3–4-week-old WKY rats and SHR (Figure 6). In contrast, there was a marked reduction in ET-1 mRNA in the inner medulla of 8–9-week-old SHR compared with age-matched WKY controls (interassay variability of 15.3% for WKY rats and 16.5% for SHR). To determine if this reduction in inner medullary ET-1 mRNA reflected ET-1 mRNA in the IMCD, acutely isolated IMCD were examined. Unfortunately, we were unable to get measurable quantities of RNA from acutely isolated cells. It is probable that this failure was due to release of substantial amounts of RNases during the process of mincing and digesting the inner medulla. Nonetheless, the finding of substantially reduced ET-1 release by acutely isolated IMCD cells from 8–9-week-old SHR argues in favor of decreased ET-1 synthesis by this group since it is highly unlikely that significant amounts of ET-1 would remain attached to the cells during the process of enzymatic digestion and multiple washings. Finally, to confirm the findings on ET-1 release by cultured IMCD cells, ET-1 and B-actin mRNA were quantitated in cultured IMCD cells obtained from 3–4- and 8–9-week-old WKY rats and SHR (Figure 7). There was a tendency for ET-1 mRNA to be lower in the cultured IMCD cells from 3–4-week-old SHR compared with age-matched WKY rats; however, this difference was not significant. Conversely, there was a marked decrease in ET-1 mRNA in IMCD cells from 8–9-week-old SHR compared with age-matched WKY rats, again confirming that whatever mechanism (or mechanisms) are responsible for decreased ET-1 production by IMCD cells in hypertensive SHR persist in culture.

Discussion

Abnormal renal handling of sodium and water has been shown to be important in the development and maintenance of hypertension. The proximal tubule has been thought to be the primary site responsible for the impaired pressure-natriuresis response in genetic hypertension; however, other nephron segments have been implicated. Micropuncture studies have identified increased chloride reabsorption in the loop of Henle in Dahl salt-sensitive (DS) rats compared with Dahl salt-resistant (DR) rats when the kidneys were perfused at the same pressure. The collecting duct, although less well studied, may also undergo functional changes in...
animals with genetic hypertension. Husted and Stokes noted that monolayers of cultured IMCD cells obtained from DS rats had higher short circuit currents than did IMCD cells from DR rats. Furthermore, IMCD cells from DS rats are less responsive (as determined by cyclic GMP accumulation) to atrial natriuretic factor and nitroprusside. IMCD cells from DS rats also have lower basal and stimulated PGE2 production compared with those from DR rats. Thus, IMCD cells from DS rats appear to have a higher basal sodium reabsorption rate, to produce less endogenous inhibitors of sodium transport, and to have a reduced response to exogenous inhibitors of sodium transport. Our finding that ET-1 production by IMCD cells is reduced in SHR provides further evidence that collecting duct, and in particular IMCD, function is altered in animal models of hypertension. Since ET-1 potently inhibits Na,K-ATPase activity and AVP-stimulated water permeability in IMCD cells, these results raise the possibility that, like DS rats, sodium reabsorption pathways in the IMCD of SHR may be under less endogenous inhibition.

The mechanism by which ET-1 levels are reduced in the kidney of SHR is unknown. These changes occur only after the development of hypertension, suggesting that the hypertensive state in SHR, per se, may influence ET-1 production by IMCD cells. It is possible that alterations in medullary blood flow, interstitial pressures, or local hormonal changes could affect production of ET-1 by IMCD cells in SHR, although no such relation between these factors and ET-1 synthesis by IMCD cells has been described. Reduced IMCD ET-1 production could conceivably be due to alterations in circulating plasma ET-1 concentration; however, neither the present study nor previous ones detected changes in plasma ET-1 in SHR. It is also possible that the reduced ET-1 production is caused by an intrinsic change in IMCD cells. Such a conclusion is supported by the observation that cultured IMCD cells from SHR continue to synthesize less ET-1 than do IMCD cells obtained from age-matched WKY rats. Why this difference in IMCD ET-1 production should be manifest only after the SHR develops hypertension is unknown; however, it may relate to age-associated changes in ET-1 synthetic capability. In the current study, a substantial increase in renal ET-1 production (per cell) was observed as both the SHR and WKY rats aged. This suggests that whatever process is responsible for the rise in ET-1 synthesis with age may be deranged in SHR. Clarification of these mechanisms awaits further studies.

Decreased ET-1 production by IMCD cells, as noted above, may ultimately contribute to enhanced sodium and water reabsorption by this nephron segment in SHR. Several issues need to be considered, however, before this speculation can be confirmed. First, alterations in ET-1 release by IMCD cells from SHR could be accompanied by changes in endothelin receptors. Such a possibility has not been directly investigated; however, a previous study has detected no difference between SHR and WKY rats in whole kidney receptor or Bmax for [125I]-ET-1. Furthermore, in this same study, whole kidney ET-1 was also found to be markedly reduced in hypertensive SHR compared with WKY controls. It is also possible that ET-1 receptor activation results in an altered signal in the IMCD of SHR. Enhanced responsiveness of blood vessels to ET-1 has been described in the SHR; thus it is not possible to predict a change in IMCD ET-1 receptor signaling. A second consideration is the possibility of altered ET-1 production by IMCD cells of SHR in response to locally produced or circulating stimulatory or inhibitory factors. The current study assessed only basal immunoreactive ET-1 release; thus it is conceivable that IMCD cell responsiveness to regulatory agents could be modified. It has been noted that AVP enhances ET-1 release from renal medullary slices and that this increase is greater in DS rats than in DR rats. We have not been able to detect a stimulatory effect of AVP on ET-1 release by IMCD cells, whether cultured or acutely isolated (unpublished observation from our laboratory). AVP can augment ET-1 secretion by cultured endothelial cells, suggesting that the enhanced responsiveness to AVP noted above was due to endothelial cell ET-1 production. This also raises the possibility that endothelial cells in the renal medulla of rats with genetic hypertension may have altered production of ET-1. Finally, sodium and water transport by the IMCD of SHR has not been directly evaluated. Before a role for ET-1 in altered IMCD function in SHR could be confirmed, such studies would need to be done, if possible, in the presence and absence of ET-1 receptor antagonists or anti–ET-1 antibodies.

In summary, the production of ET-1 by the inner medulla is markedly reduced in SHR compared with age-matched WKY controls. This reduction is most likely due to decreased synthesis and release of ET-1 by IMCD cells. Furthermore, the reduced ET-1 production by IMCD cells from SHR persists in culture. Since ET-1 inhibits sodium and water reabsorption pathways in the IMCD, these findings raise the possibility that reduced ET-1 in the inner medulla of hypertensive rats may contribute to the hypertensive state. Further studies are needed to define the role that ET-1 in the renal medulla plays in the development and maintenance of hypertension.
Acknowledgment

We thank Eva Padilla for her excellent technical assistance.

References

16. Hughes et al Renal Endothelin-1 Synthesis in Hypertension 673

Alterations in renal endothelin-1 production in the spontaneously hypertensive rat.
A K Hughes, R C Cline and D E Kohan

Hypertension. 1992;20:666-673
doi: 10.1161/01.HYP.20.5.666

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1992 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/20/5/666

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at: http://hyper.ahajournals.org/subscriptions/