Letters to the Editor

Letters to the Editor will be published, if suitable, as space permits. They should not exceed 500 words (typed double-spaced) in length and may be subject to editing or abridgment.

Aftereffects of Exercise

To the editor:

We read with interest the report by Cléroux and colleagues on the hemodynamic aftereffects of exercise in the February issue.1 They are wrong to state that no study has looked simultaneously at spillover and clearance studies would be necessary to conclude comprehensive methods such as organ-specific norepinephrine because it is known that after the cessation of exercise there is a sudden increase in renal blood flow that would increase plasma norepinephrine clearance and lead to a reduction in plasma levels independently of any true change in norepinephrine release. More comprehensive methods such as organ-specific norepinephrine spillover and clearance studies would be necessary to conclude anything about regional and systemic sympathetic activity from norepinephrine estimations.

Thus, we commend Cléroux and colleagues1 for reporting on this interesting area of integrated physiology but would warn against drawing premature conclusions.

References


Andrew J.S. Coats
National Heart and Lung Institute
London, UK

Massimo Piepoli
National Heart and Lung Institute
London, UK

Cardiac Department
John Radcliffe Hospital
Oxford, UK

The following is in response:

To the editor:

We are grateful to Drs. Coats and Piepoli for pointing out an earlier study1 that had unwittingly escaped our attention and for mentioning unpublished data supporting our observation that forearm vascular resistance was unchanged in normotensive subjects after they had performed cycling exercise at 50% of maximal aerobic capacity. In our view, it remains all the more interesting that hypertensive subjects exercising at the same relative (percentage of maximal aerobic capacity) and absolute (Watts) intensity exhibited strikingly different postexercise hemodynamic responses.2

Their comment on sympathetic nervous activity is well taken. In our article,2 we recognized that the evidence linking the finding of a reduced muscle sympathetic nervous activity after exercise in hypertensive subjects3 with our observation of reduced forearm vascular resistance and plasma norepinephrine is valid to the extent that the relations between sympathetic nervous activity and plasma norepinephrine also hold after exercise when the leg has been active and the forearm has not. This important limitation could prove them right in that it may be "misleading to extrapolate from what is happening to localized sympathetic nerve traffic in the leg to the state of sympathetic activity to other organs..."; for the time being, we note that Drs. Coats and Piepoli revise their earlier conclusion that "postexercise hypotension seems associated with persistent sympathetic discharge and reduced vagal activity on the cardiovascular system"4 and now state that "...for cardiac sympathetic activity at least, sympathetic tone is persistently elevated rather than reduced after exercise."5

In closing, we are well aware that plasma norepinephrine may be subject to criticism as an index of sympathetic nervous activity. However, the suggestion that an increased clearance of norepinephrine due to an increased renal blood flow after exercise may contribute importantly to changes in plasma levels does not find
strong support in the literature. Indeed, plasma norepinephrine clearance does not decrease during exercise when renal blood flow is reduced6 nor is its half-life different during recovery compared with rest.6 This suggests that changes in plasma levels are more likely to be due to changes in norepinephrine release. Drs. Coats and Piepoli discuss their data on sympathetic tone assessed with power spectral analysis. It may be worth mentioning that with this approach, Arai et al7 reported that sympathetic activity to the heart was reduced below baseline levels after a maximal exercise protocol similar to the one used by Piepoli et al,4 i.e., in direct contradiction with the conclusion of the latter authors, although a persistent tachycardia was observed in both studies.

Jean Cléroux
Ngoussou Kouamé
Andre Nadeau
Yves Lacourcière
Hypertension Research Unit
CHUL Research Center
Denis Coulombe
Department of Cardiology
CHUL Research Center
Québec, Canada

References
Aftereffects of exercise.
A J Coats and M Piepoli

Hypertension. 1992;20:851-852
doi: 10.1161/01.HYP.20.6.851

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1992 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/20/6/851.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/