Effects of Weight Reduction on Cellular Cation Metabolism and Vascular Resistance


The early stages of weight loss are associated with a reduction in blood pressure, and the mechanisms mediating this reduction remain unclear. Platelet free calcium levels, \([\text{Ca}^{2+}]_j\), have been reported to be elevated in essential hypertension and to decrease with pharmacological treatment of the hypertension. In the current study, 18 obese subjects had measurements of blood pressure, forearm blood flow, forearm vascular resistance, and both basal platelet \([\text{Ca}^{2+}]_j\), and \([\text{Ca}^{2+}]_j\), responses to vasopressin during 12 weeks on a very low calorie (3,360 kJ, or 800 kcal) diet. Weight reduction was associated with reduction in mean arterial blood pressure at 3–4 weeks. There were associated reductions in forearm vascular resistance and platelet \([\text{Ca}^{2+}]_j\), as well as increases in forearm blood flow at 3–4 weeks of the diet. Increased forearm blood flow was correlated with weight loss. Vasopressin-induced platelet \([\text{Ca}^{2+}]_j\), responses increased, which correlated with the reduction in mean arterial pressure at 7–8 weeks of weight loss. Assuming that platelet \([\text{Ca}^{2+}]_j\), metabolism reflects vascular smooth muscle cell \([\text{Ca}^{2+}]_j\), metabolism, the data suggest that blood pressure reduction after weight loss may be related to reduced vascular smooth muscle cell \([\text{Ca}^{2+}]_j\). The reason for the increased vasopressin-induced \([\text{Ca}^{2+}]_j\), after weight reduction is unclear. (Hypertension 1993;21:308–314)

KEY WORDS • weight loss • vascular resistance • calcium

Weight loss after food restriction is associated with a reduction in blood pressure independent of effects of salt restriction.1-11 This reduction in blood pressure in association with caloric restriction is associated with a reduction in plasma renin activity4-8 and sympathetic nervous system activity.5-8 The renin-angiotensin system and the sympathetic nervous system affect blood pressure by increasing peripheral vascular resistance,1213 as well as by promoting renal reabsorption of sodium and water and by interfering with the pressure-natriuresis response.1415 Finally, the enhanced sympathetic nervous system activity seen in obesity16 may increase blood pressure through trophic effects on blood vessels that render them more responsive to vasoconstrictor stimuli.17 Results from several studies have suggested that hypertension associated with obesity is characterized by abnormalities in cell cation (e.g., calcium and sodium) metabolism and that weight loss and associated reductions in blood pressure are accompanied by corrections of these cell cation abnormalities.6,11,18 Vascular smooth muscle contraction is stimulated by increased intracellular free calcium ([Ca$$^{2+}$$]j),19 and hypertensive states are often associated with increased levels of [Ca$$^{2+}$$]j.19-24 Similarly, elevations in [Ca$$^{2+}$$]j have also been demonstrated in platelets from hypertensive individuals.19-24 Thus, platelets have been used as surrogates for vascular smooth muscle cells, as both cell types have similar Ca$$^{2+}$$ regulatory systems16-20: both share an a$$^2$$-adrenergic receptor-cyclase system16 and a Ca$$^{2+}$$-dependent contraction-coupling mechanism.26 Accordingly, the present study was designed to evaluate the effects of weight loss on blood pressure, peripheral vascular resistance, and platelet [Ca$$^{2+}$$], metabolism in 18 obese subjects.

Methods

Eightteen subjects undergoing a weight-reduction program at Wayne State University were included in this study after we obtained approval from the institutional review committee and informed consent from the subjects, in accordance with our institutional guidelines. Potential subjects (>30% of calculated ideal body weight) were excluded if they had insulin-dependent diabetes mellitus, cardiac disease, or severe hypertension (systolic blood pressure >180 mm Hg, diastolic >114 mm Hg) or were taking either oral hypoglycemic or antihypertensive agents. Clinical characteristics of the study population are given in Table 1. Hemodynamic and biochemical determinations, as described below, were made before subjects began a very low calorie (3,360 kJ, or 800 kcal) liquid diet (VLCD) (Optifast, Delmar, Minn.) and at 3–4 weeks, 7–8 weeks,
Peripheral Vascular Resistance

Measurements of  
Platelet 

Measurements of Hemodynamics and Peripheral Vascular Resistance

Blood pressure was measured in the right arm positioned at heart level using a large cuff and a standard mercury column sphygmomanometer. Values of three recordings taken at 1-minute intervals with subjects in the sitting position were reported as mean±SEM. Forearm blood flow (FBF) and forearm vascular resistance (FVR) were measured by electrical impedance plethysmography (IPG-104, RJL Systems, Detroit, Mich.) as previously described.4-8 FBF was then quantitated from the resulting tracings using the backslope projection method of Nyboer.9 FVR was calculated by dividing the mean arterial pressure (MAP) by FBF. FBF determined by this method exhibits an intraindividual coefficient of variation of less than 3% in our laboratory.29

Measurements of Platelet 

Table 1 gives the baseline clinical, hemodynamic, and biochemical data for the 18 obese subjects in this study. All subjects were monitored by serial measurements of potassium, carbon dioxide content, and other parameters as previously described.1-4

### Results

Table 1 shows the baseline clinical, hemodynamic, and biochemical data for the 18 obese subjects in this study. The study population included 11 blacks and seven whites, 12 women and six men. The subjects were all more than 30% of ideal body weight (74.3±4.1%). Body mass index for the 18 subjects was 37.2±2.9 kg/m², and collectively they exhibited borderline hypertension as have previously found that this method of preparing platelets by differential centrifugation yields results indistinguishable from those obtained in platelets purified by gel filtration.20 [Ca²⁺]i was measured in a model 1680 dual excitation monochromator spectrophotometer (SPEX Industries, Edison, N.J.) with excitation wavelengths of 340 and 380 nm, an emission wavelength of 505 nm, and entry and exit slits set at 3 nm. The response of [Ca²⁺]i to arginine vasopressin (AVP) was determined by measuring the peak response to 9 μmol AVP per liter, after a stable baseline value for [Ca²⁺]i, had been established before AVP was added. The response to AVP is expressed as the percent increase over the baseline [Ca²⁺]. All measurements were made in a waterjacketed cuvette at 37°C, with continuous stirring. [Ca²⁺]i was calculated from the ratio of fluorescence at 340 nm to that at 380 nm, as described by Grynkiewicz et al;21 the maximal ratio was obtained with 0.7% Triton X-100 and the minimal ratio with 5 mM EGTA-Tris (pH 8.6).21

### Statistical Analysis

Statistical time-related changes in hemodynamic and biochemical parameters were evaluated by repeated-measures analysis of variance after it was verified that the data were normally distributed. Multiple regression analysis was used to calculate coefficients of correlation among various parameters. When appropriate, the significance of differences was also assessed using Student’s t test. All values are expressed as mean±SEM (with number of observations in parentheses); values of p<0.05 were considered significant.

### Results

Table 1 gives the baseline clinical, hemodynamic, and biochemical data for the 18 obese subjects in this study. The study population included 11 blacks and seven whites, 12 women and six men. The subjects were all more than 30% of ideal body weight (74.3±4.1%). Body mass index for the 18 subjects was 37.2±2.9 kg/m², and collectively they exhibited borderline hypertension as previously described.1-4
FIGURE 1. Line plots show weight loss over time in study subjects on 3,360-kJ (800-kcal) diet (panel A) and effect of weight loss on mean arterial pressure (panel B). The mean of triplicate measurements was used for calculation of mean arterial pressure. Each data point is the mean±SEM of the study group (n=18 in weeks 0–8; n=10 in weeks 11–12). *p<0.05, **p<0.01.

evidenced by a MAP of 98.9±3.0 mm Hg. There were no differences in any baseline parameters when the four groups were compared, with the exception of AVP-induced [Ca^{2+}]. When compared with men, women, despite having similar baseline [Ca^{2+}], did have a greater AVP-induced [Ca^{2+}], response (580±74 versus 233±36 units, respectively; p<0.01). This gender difference in responses has not been reported previously, and the reason for this difference is unclear.

Figures 1A and 1B illustrate the changes in body weight and MAP during the 12 weeks of the VLCD. Although subjects lost weight each week, significant reductions in group mean weight did not occur until 7–8 weeks because of the variability among subjects (Figure 1A). There was a significant reduction in MAP after 3–4 weeks (4.4±1.4 mm Hg, p<0.05, n=18), with a further reduction observed at 7–8 weeks (8.7±1.4 mm Hg, p<0.01, n=18). However, there was no significant additional reduction in MAP after 7–8 weeks (n=18). Diastolic and systolic blood pressures decreased by 11.1±2.1 (p<0.05) and 11.2±2.5 mm Hg (p<0.05, n=18), respectively, after 12 weeks of the VLCD (Figures 2A and 2B).

Results of FVR and FBF measurements are illustrated in Figures 3A and 3B. Similar to our observations of MAP, FVR was also reduced in subjects during the 12-week study (Figure 3A). After 3–4 weeks of the VLCD, FVR decreased by 7.1 mm Hg/(mL/100 mL per minute), (p<0.01, n=18). The reduction in FVR was even more pronounced after 7–8 weeks (week 0, 34±2.0; week 7–8, 22±1.2 mm Hg/(mL/100 mL per minute), p<0.001, n=18). However, although FVR tended to continue to decrease at 11–12 weeks (n=10), it was not significantly different than FVR at 7–8 weeks.

As FVR decreased in subjects during the VLCD (Figure 3A), a concomitant increase in FBF was observed (Figure 3B). After 7–8 weeks, FBF increased by 54±3% (p<0.001). Although FBF tended to continue to increase at week 11–12 (57±4%), it did not reach a level of significance beyond the FBF observed at week 7–8 (week 0, 2.8±0.2; week 3–4, 3.7±0.2; week 7–8, 4.3±0.2; week 11–12, 4.4±0.2 mL/100 mL per minute; p<0.01).

Changes in FBF were negatively correlated with changes in FVR at 7–8 weeks (r=-0.58, p<0.02), as would be anticipated (data not shown). There was also a significant correlation (r=0.58, p<0.03) between weight loss and the change in FBF observed at weeks 7–8 (Figure 4A). However, no significant correlations were observed between changes in either FVR or FBF and any of the other parameters measured during the 12-week VLCD.
Results of baseline platelet [Ca\(^{2+}\)], and AVP-stimulated [Ca\(^{2+}\)], responses over the duration of the VLCD are illustrated in Figures 5A and 5B. After 3–4 weeks of the VLCD, basal platelet [Ca\(^{2+}\)], decreased from 38.1±2.8 to 18.9±2.1 nM (n=18, p<0.05) (Figure 5A), whereas AVP-stimulated [Ca\(^{2+}\)], actually increased two-fold compared with baseline (n=18, p<0.01) (Figure 5B). Compared with baseline [Ca\(^{2+}\)], there was both an additional reduction in platelet [Ca\(^{2+}\)], (16.7±1.6 nM, p<0.01) and a further increase in AVP-stimulated [Ca\(^{2+}\)], (n=18, p<0.001) after 7–8 weeks of the VLCD. However, there were no additional significant changes in baseline or AVP-stimulated [Ca\(^{2+}\)], in the 10 remaining subjects after 11–12 weeks of the VLCD. Neither baseline [Ca\(^{2+}\)], nor the changes in baseline [Ca\(^{2+}\)], observed during the 12-week VLCD correlated with the observed changes in blood pressure or other hemodynamic parameters. However, there was a correlation between the mean decrease in MAP and the mean increase in AVP-stimulated [Ca\(^{2+}\)], responses at 7–8 weeks of weight reduction (r=0.512, n=18, p<0.04) (Figure 4B).

**Discussion**

These data indicate that the weight loss-induced reduction in blood pressure in obese individuals is accompanied by significant decreases in platelet [Ca\(^{2+}\)]. These data are consistent with the observations of Scherrer et al,\(^{11}\) who recently reported that platelet [Ca\(^{2+}\)], decreased in obese subjects after 10 weeks of dieting. Our results indicate that reduction in platelet [Ca\(^{2+}\)], occurs within the first month of weight loss and continues to decrease throughout a 12-week VLCD. In the study by Scherrer et al,\(^{11}\) only those subjects who had a change in body mass index of more than 5% were included in the various parameters analyzed, including the platelet [Ca\(^{2+}\)]. Our results indicated that even small reductions in weight (changes in body mass index <5%) are associated with reduced platelet [Ca\(^{2+}\)].

The levels of baseline platelet [Ca\(^{2+}\)], observed in our study (38.1±2.8 nM) were lower than those we had observed in our previous study with young nonobese individuals.\(^{29,30}\) Thus, it is possible that these levels change with age, adiposity, or both. These baseline levels were also lower than those observed by Scherrer et al\(^{11}\) in obese subjects (165 nM). There are several possible explanations for these differences. In our study, we used the dye indicator fura-2,\(^{29-32}\) whereas Scherrer et al\(^{11}\) used the quin-2 method. Differences in auto-fluorescence, degree of quenching, dye leakage, and reproducibility of results suggest that the fura-2 method is preferable.\(^{21-24,29-32}\) A number of other factors, such...
FBF. The relatively small decrease in blood pressure who showed a correlation between the decreases in platelet [Ca\(^{2+}\)] and reductions in FVR or increases in platelet [Ca\(^{2+}\)], is in agreement with the observations of

Our observations, in addition to those of Scherrer et al, suggest that nonpharmacological reduction of blood pressure can decrease platelet [Ca\(^{2+}\)] levels over the past decade. In general, increased caution and awareness of these factors have resulted in increasingly lower values being reported for platelet [Ca\(^{2+}\)] levels, over the past decade.

Our observation that the AVP-stimulated platelet [Ca\(^{2+}\)], responses actually increased in parallel with the reduction in baseline [Ca\(^{2+}\)], was somewhat surprising. Plasma AVP levels were not measured in these individuals. However, one could speculate that if plasma AVP levels decline with weight loss, the platelet sensitivity to AVP might increase. Thus, we can only speculate on the reciprocal relation between baseline and agonist-stimulated platelet [Ca\(^{2+}\)], responses. Because AVP-induced platelet [Ca\(^{2+}\)], responses are dependent on both mobilization of intracellular Ca\(^{2+}\) stores and transmembrane flux of extracellular Ca\(^{2+}\), it is possible that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes. In contrast to vascular smooth muscle cells, the transmembrane flux of extracellular Ca\(^{2+}\) is an important mechanism in AVP-induced increases in platelet [Ca\(^{2+}\)], so we speculate that increasing basal levels of platelet [Ca\(^{2+}\)] inhibits one of these processes.
explain this increase in AVP-induced \([\text{Ca}^{2+}]\), rise with weight reduction. However, the reason for the greater AVP-stimulated \([\text{Ca}^{2+}]\) responses after weight loss remains unclear.

It is interesting that increases in AVP-induced platelet \([\text{Ca}^{2+}]\) responses did correlate with decreases in MAP after 2 months of weight reduction in these obese subjects. This observation suggests that changes in AVP-stimulated platelet \([\text{Ca}^{2+}]\) may be a more sensitive reflection of the relation between changes in platelet \([\text{Ca}^{2+}]\) metabolism and changes in peripheral vascular resistance. More prospective studies including larger numbers of subjects with greater lowering of blood pressure may be necessary to clarify this issue.

This is the first study to prospectively evaluate the effects of weight reduction in obese subjects on peripheral vascular resistance and peripheral blood flow. Our data indicate that peripheral vascular resistance was markedly reduced, with accompanying increases in blood flow, within 3–4 weeks of the 12-week weight-reduction program. A strong correlation was observed between reductions in body weight and increases in peripheral blood flow, but not vascular resistance on blood pressure. Because vascular resistance is derived from peripheral blood flow and blood pressure measurements, our data suggest that measurement of peripheral blood flow is a more sensitive measure than blood pressure in determining changes in hemodynamics accompanying weight reduction.

Our studies do not rule out the importance of a reduction of cardiac output with weight reduction as another factor involved in the lowering of blood pressure in obese individuals undergoing a weight-loss program. Thus, our data suggest that a reduction in peripheral vascular resistance is an important hemodynamic mechanism involved in blood pressure reduction associated with weight reduction in obese individuals.

Acknowledgments
We thank Susan A. King for technical assistance and Lois Wiggins for her secretarial support.

References
34. Buhler FR, Bolli P, Erne P, Kiowski W, Muller FB, Hulthin UL, Bogt H: Adrenoreceptors, calcium and vasoconstriction in nor-
(suppl 6):130–136
35. Moore TJ, Taylor T, Williams GH: Human platelet angiotensin II
receptors: Regulation by the circulating angiotensin level. J Clin
Endocrinol Metab 1984;58:778–782
36. Haller T, Oney T, Hauck U, Distler A, Philipp T: Increased
intracellular free calcium and sensitivity to angiotensin II in plate-
37. Warren GB, Honsley MD, Metcalfe JC, Bindsail NJM: Cholesterol
is excluded from the phospholipid annulus surrounding inactive
38. Ortega A, Mas-Oliga J: Direct regulator effect of cholesterol on
the calmodulin stimulated calcium pump of cardiac sarcolemma.
Biochem Biophys Res Commun 1986;139:868–874
Prog Cardiovasc Dis 1987;30:61–72
40. Knorr M, Locher R, Vogt E, Vetter W, Black LH, Ferracin F,
Lefkovits H, Fletcher A: Rapid activation of human platelets by
low-density lipoprotein via phosphatidylinositol cycle. Eur J Bio-
chem 1988;172:753–759
41. Capponi AM, Lew PD, Vallotton MB: Cytosolic free calcium levels
in monolayers of cultured rat aortic smooth muscle cells. J Biol
Chem 1985;260:7836–7842
42. Erne P, Pletscher A: Vasopressin-induced activation of human
blood platelets: Prominant role of Mg2+. Naunyn Schmiedebergs
Arch Pharmacol 1984;329:98–99
43. Pletscher A, Erne P, Burgisser E, Ferracin F: Activation of human
blood platelets by arginine-vasopressin: Role of bivalent cations.
Mol Pharmacol 1985;28:508–514
44. Messerli FH: Cardiovascular effects of obesity and hypertension.
Lancet 1982;1:1165–1168
Effects of weight reduction on cellular cation metabolism and vascular resistance.
D B Jacobs, J R Sowers, A Hmeidan, T Niyogi, L Simpson and P R Standley

Hypertension. 1993;21:308-314
doi: 10.1161/01.HYP.21.3.308

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1993 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/21/3/308

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at: http://hyper.ahajournals.org//subscriptions/