We studied the inhibitory effects of heparin on basal and agonist-induced endothelin-1 biosynthesis and release from cultured bovine endothelial cells. Heparin dose-dependently and similarly inhibited endothelin-1 release, inositol trisphosphate production, and intracellular free Ca\(^{2+}\) levels stimulated by thrombin. Hirudin fragment had an inhibitory effect on thrombin-induced endothelin-1 release, whereas anti-thrombomodulin antibody had no effect. Heparin completely blocked phorbol ester–induced endothelin-1 release, whereas it had a partial inhibitory effect on endothelin-1 release stimulated by angiotensin and vasopressin. Northern blot analysis using complementary DNA for bovine preproendothelin-1 as a probe revealed that heparin reduced not only the basal but also the stimulated expression of preproendothelin-1 messenger RNA by thrombin and phorbol ester. These data suggest that heparin, in addition to its antithrombin effect, has an inhibitory effect on the biosynthesis and release of endothelin-1, possibly by inhibiting protein kinase C–dependent pathway.

Key Words • endothelins • thrombin • heparin • protein kinase C • RNA, messenger • endothelium
FIGURE 1. Line graphs show effect of heparin (panel A) and hirudin fragment (panel B) on endothelin-1-like immunoreactivity release from cultured bovine carotid artery endothelial cells. Cells were incubated with (●) or without (○) thrombin (2 units/mL) in the absence and presence of various doses of heparin (0.1–10 units/mL) or hirudin fragment (0.1–100 ng/mL) for 4 hours. Each point is the mean of six experiments; bar shows SEM. *Statistically significant difference (p<0.05) from control.

Cell Culture and Incubation

BCAE cells were prepared and cultured in DMEM containing 10% fetal bovine serum and antibiotics at 37°C in a humidified atmosphere of 95% air-5% CO2 as previously described.19 Cells harvested between the ninth and 12th passages were used in the experiments. To study the release of ET-1, confluent monolayer cells (5x10⁵) were usually preincubated in serum-free DMEM over 24 hours and then were placed in 1 mL fresh serum-free DMEM with agents and incubated for 4 hours unless otherwise specified.

Radioimmunoassay of Endothelin-1

ET-1-like immunoreactivity (ET-1-LI) in medium was measured by a specific radioimmunoassay for ET-1 using rabbit anti-ET-1 serum as previously described.19 The antibody has full cross-reactivity with ET-1 (100%), endothelin-2 (200%), and endothelin-3 (100%) but none with big ET-1. The sensitivity of the ET-1 radioimmunoassay was 1 fmol per tube, and the 50% intercept was 14 fmol per tube. The intra-assay and interassay variations were 3.2% (n=6) and 8.6% (n=5), respectively.

Determination of Inositol 1,4,5-Trisphosphate

Confluent BCAE monolayers (10⁶ cells) in 12-well dishes were incubated with Hanks’ solution containing 20 mM LiCl at 37°C for 15 seconds; the incubation was terminated by the addition of ice-cold 10% perchloric acid. Perchloric acid extracts were neutralized with 1.54 M KOH/75 mM HEPES solution, and inositol 1,4,5-trisphosphate (IP₃) was determined by a competitive protein binding assay kit (DuPont NEN Research Products).

Determination of Intracellular Free Ca²⁺ Concentration

Confluent BCAE cells were trypsinized and incubated with 4 μM fura 2-AM at 37°C for 20 minutes in HEPES-buffered physiological salt solution as previously reported.20 The Ca²⁺-fura-2 fluorescence of the suspended cells (5x10⁶ cells/mL) was measured by a spectrofluorometer (CAF-100, JASCO Co. Ltd., Tokyo) using excitation of 340 and 380 nm and emission of 500 nm. Values of intracellular free Ca²⁺ concentration ([Ca²⁺]ᵢ) (nM) were calculated according to the method of Grynkiewicz et al21 with the following formula:

\[
[Ca^{2+}]_i = K_d \times \frac{(R - R_{min})}{(R_{max} - R)} \times \frac{380_{min}}{380_{max}}
\]

assuming that the K_d for the fura-2/Ca²⁺ complex is 224 nM at 37°C, R represents the ratio of fluorescence of the sample at 340 and 380 nm, and R_{max} and R_{min} are the ratios at maximal fluorescence with 10% Triton X-100 and minimal fluorescence with 15 mM EGTA, respectively.
Imai et al Inhibition of Endothelin-1 Synthesis by Heparin

FIGURE 2. Bar graph shows effect of anti-thrombomodulin antibody (Anti TM Ab) on thrombin-induced endothelin-1-like immunoreactivity release. Bovine carotid artery endothelial cells were incubated with (●) or without (○) thrombin (2 units/mL) in the absence and presence of anti-thrombomodulin antibody (50 μg/mL) for 4 hours. Each column is the mean of three experiments; bar shows SEM.

Northern Blot Analysis
Confluent BCAE monolayers (3 × 10⁶ cells) in 60-mm culture dishes were incubated in 2 mL fresh serum-free DMEM with or without agonist and heparin for 30 minutes. Total RNAs from BCAE cells were then extracted with selective precipitation in 3 M LiCl/6 M urea, and cellular RNAs (5 μg per lane) were separated by formaldehyde/1.1% agarose gel electrophoresis and transferred to a MagnaGraph nylon membrane (Micron Separations Inc., Westboro, Mass.). After ultraviolet wave cross-linking, RNA immobilized on the membrane was hybridized with bovine preproET-1 complementary DNA (cDNA) as a probe in the presence of 50% formamide at 42°C over 16 hours. The probe was labeled with deoxycytidine 5'-[32P]triphosphate (111 TBq/mmol) by the random-primed labeling method. The membrane was washed finally in 0.1 × SSPE (15 mM NaCl, 1 mM Na₂HPO₄, 0.1 mM EDTA)/0.5% sodium dodecyl sulfate at 50°C and autoradiographed with an intensifying screen at −80°C for 24 hours.

Statistical Analysis
Data are expressed as mean ± SEM. Statistical analysis was performed by unpaired Student's t test.

Statistical Analysis

Results
Thrombin time-dependently (4–24 hours) and dose-dependently (0.2–20 units/mL) stimulated release of ET-1-LI; the maximum effect was induced with 2 units/mL after a 24-hour incubation (data not shown). As shown in Figure 1, heparin (0.1–10 units/mL) and hirudin fragment (0.1–100 ng/mL) dose-dependently decreased ET-1-LI release stimulated by thrombin (2 units/mL); heparin in a maximal dose (10 units/mL) decreased ET-1-LI release by 75%, and hirudin fragment (10–100 ng/mL) completely blocked the stimulatory effect to basal levels. Heparin also reduced the basal ET-I-LI release at higher doses (5–10 units/mL), whereas hirudin fragment did not. Anti-thrombomodulin antibody in a dose (50 μg/mL) sufficient to block thrombomodulin activity had no effect on the thrombin-induced ET-1-LI release (Figure 2).

Thrombin also dose-dependently (0.2–20 units/mL) induced immediate and transient formation of IP₃ and increase in [Ca²⁺], both of which peaked at 15 seconds and returned to prestimulated levels by 60 seconds.
Figure 4. Typical tracings from representative experiments show changes of intracellular free Ca^{2+} concentration ([Ca^{2+}]_{i}) in cultured bovine carotid artery endothelial cells. Cell suspensions loaded with fura-2 were challenged with thrombin (2 units/mL) alone (top tracing) and after pretreatment with heparin (10 units/mL) (bottom tracing). (data not shown). The thrombin-induced IP_{3} formation was inhibited by heparin in a dose-dependent fashion (0.5–5 units/mL) (Figure 3). Heparin also reduced the thrombin-induced [Ca^{2+}]_{i} increase (Figure 4).

Ang II (10^{-6} M), AVP (10^{-6} M), and TPA (10^{-6} M) significantly stimulated ET-1-LI release (Figure 5) (p<0.05). In the presence of heparin, TPA-induced ET-1-LI release was completely inhibited, whereas ET-1-LI release stimulated by Ang II and AVP was partially, but significantly, decreased (p<0.05). Indomethacin (10^{-6} M) and L-NMMA (2×10^{-4} M) failed to affect the basal release or heparin-induced decrease in ET-1-LI release (data not shown).

Northern blot analysis using the cloned bovine preproET-1 cDNA as a probe revealed that the expression of preproET-1 mRNA (2.3 kb) was rapidly induced (within 15 minutes) by thrombin and TPA, reaching a peak by 30–60 minutes (data not shown). As shown in Figure 6, preproET-1 mRNA expression induced by thrombin (10 units/mL) and TPA (10^{-6} M) was completely inhibited by heparin (20 units/mL). Heparin also reduced the basal expression of preproET-1 mRNA.

Discussion

Thrombin is a member of a serine protease family involved in coagulation pathways, such as activation of coagulation factors (V, VIII, and XIII) and conversion of fibrinogen to fibrin. Thrombin has a membrane-bound receptor on vascular endothelial cells, termed thrombomodulin,7 that acts as a cell surface cofactor to activate vitamin K–dependent protein C, thereby inactivating factors Va and VIIIa and subsequent inhibition of factor Xa in a negative feedback fashion. Based on the failure of the anti-thrombomodulin antibody to block the thrombin-induced ET-1-LI release, it is suggested that thrombomodulin is not involved in the mechanism of thrombin-mediated ET-1 release from endothelial cells.

The present study clearly shows that thrombin induces immediate and dose-dependent effects on IP_{3} formation and [Ca^{2+}]_{i} increase. These data are compatible with those of a previous study showing that thrombin induces phospholipase C-mediated phosphoinositide breakdown in human endothelial cells.22 The present study also shows that thrombin induces immediate expression of preproET-1 mRNA and subsequently releases ET-1-LI from BCAE cells. These data are also consistent with those previously reported.119

Recently, a functional thrombin receptor has been cloned from human megakaryocytes;8 the thrombin receptor has seven transmembrane domains common to the G protein–coupled receptor superfamily. Thrombin may cleave the Arg^{41}Ser^{42} bond of the amino terminal extracellular binding domain of the receptor, which is critical for its activation. Functional thrombin receptors

Figure 5. Bar graph shows effect of heparin on endothelin-1–like immunoreactivity release from bovine carotid artery endothelial cells. Cells were incubated with angiotensin II (Ang II) (10^{-6} M), arginine vasopressin (AVP) (10^{-6} M), and 12-O-tetradecanoylphorbol 13-acetate (TPA) (10^{-6} M) in the absence (open column) and presence (shaded column) of heparin (10 units/mL) for 4 hours. Each column is the mean of six experiments; bar shows SEM.
have been detected in human platelets and vascular endothelial cells by polymerase chain reaction analysis.⁸ Thus, it is suggested that thrombin, after binding to its functional receptor, stimulates phosphoinositide breakdown to induce preproET-1 mRNA. We have recently shown that Ang II and AVP induce preproET-1 mRNA expression⁵ and stimulate ET-1 release, possibly through activation of protein kinase C and mobilization of intracellular free Ca²⁺ resulting from receptor-mediated phosphoinositide breakdown.⁹ Taken together, these results suggest that the mechanism by which thrombin induces preproET-1 mRNA expression and subsequent ET-1 release may be similar to that by both Ang II and AVP.

Heparin is a proteoglycan produced by mast cells and acts as an anticoagulant, mainly by accelerating the inhibitory action of antithrombin III and heparin cofactor II in plasma.¹⁰ In this study, heparin has been shown to be effective in inhibiting thrombin-induced IP₃ formation, [Ca²⁺] increase, preproET-1 mRNA expression, and subsequent ET-1-LI release under a serum-free condition. It has been demonstrated that heparin, like anionic polymers, could potentially inhibit α-thrombin in the conversion of fibrinogen into fibrin by its direct interaction with anion-binding exosite of thrombin composed of clustered arginines and lysines.¹¹ This region, although independent of the catalytic site, interacts with heparin,¹¹ heparan sulfate, dermatan sulfate, dextran sulfate, and more specifically with hirudin. In this study, we have shown that the hirudin fragment,¹⁷ which is a more potent and specific thrombin inhibitor than heparin, completely blocks the thrombin-induced ET-1-LI release from endothelial cells. Our data coincide with those of a previous study showing that hirudin inhibits the thrombin-induced, but not the spontaneous, release of ET-1 from intact porcine aorta in vitro.²³ Taken together, these results show that heparin, like hirudin, may directly inhibit thrombin binding to its functional receptor by interacting with anion-binding exosite of thrombin to block phospholipase C-mediated phosphoinositide breakdown and [Ca²⁺] increase, thereby leading to the inhibition of the synthesis and release of ET-1.

The mechanism by which heparin, but not hirudin, decreases basal synthesis and release of ET-1 remains unknown. Heparin may exert its effects through other endothelium-derived relaxing substances, such as prostacyclin and endothelium-derived relaxing factor, both of which have been shown to inhibit ET-1 release.²⁴ However, the involvement of prostacyclin and endothelium-derived relaxing factor in the inhibitory effect of heparin on ET-1 release seems unlikely because neither indomethacin nor L-NMMA exerts any effects on the basal or heparin-induced decrease in ET-1-LI release. Endothelial cells produce heparin-binding growth factors, presently known as acidic (a) and basic (b) fibroblast growth factors (FGFs). It has been shown that, in the presence of heparin, aFGF decreases prostacyclin synthesis in human endothelial cells and bFGF inhibits endothelial cell proliferation.²⁷ Because FGFs induce receptor-mediated phosphoinositide breakdown and [Ca²⁺] increase in endothelial cells,²⁸ it is possible to speculate that exogenous heparin in higher doses may inhibit phosphoinositide breakdown induced by endogenous FGFs or other yet uncharacterized factors from endothelial cells, thereby leading to a decrease in basal synthesis and release of ET-1.

The present study has further shown that heparin inhibits ET-1-LI release stimulated by Ang II, AVP, and TPA. It has been shown that heparin has a wide variety of inhibitory effects on vascular smooth muscle cells, including inhibition of cell proliferation and migration, inhibition of induction of proto-oncogenes (c-fos, c-myc) by serum and phorbol esters, and inhib-
have been detected in human platelets and vascular endothelial cells by polymerase chain reaction analysis.8 Thus, it is suggested that thrombin, after binding to its functional receptor, stimulates phosphoinositide breakdown to induce preproET-1 mRNA. We have recently shown that Ang II and AVP induce preproET-1 mRNA expression5 and stimulate ET-1 release, possibly through activation of protein kinase C and mobilization of intracellular free Ca++. Taken together, these results suggest that the mechanism by which thrombin induces preproET-1 mRNA expression and subsequent ET-1 release may be similar to that by both Ang II and AVP.

Heparin is a proteoglycan produced by mast cells and acts as an anticoagulant, mainly by accelerating the inhibitory action of antithrombin III9 and heparin cofactor II in plasma.10 In this study, heparin has been shown to be effective in inhibiting thrombin-induced IP3 formation, [Ca++] increase, preproET-1 mRNA expression, and subsequent ET-1-LI release under a serum-free condition. It has been demonstrated that heparin, like anionic polymers, could potentially inhibit α-thrombin in the conversion of fibrinogen into fibrin by its direct interaction with anion-binding exosite of thrombin composed of clustered arginines and lysines.11 This region, although independent of the catalytic site, interacts with heparin,12 heparan sulfate, dermatan sulfate, dextran sulfate, and more specifically with hirudin. In this study, we have shown that hirudin fragment,17 which is a more potent and specific thrombin inhibitor than heparin, completely blocks the thrombin-induced ET-1-LI release from endothelial cells. Our data coincide with those of a previous study showing that hirudin inhibits the thrombin-induced, but not the spontaneous, release of ET-1 from intact porcine aorta in vitro.23 Taken together, these results show that heparin, like hirudin, may directly inhibit thrombin binding to its functional receptor by interacting with anion-binding exosite of thrombin to block phospholipase C-mediated phosphoinositide breakdown and [Ca++] increase, thereby leading to the inhibition of the synthesis and release of ET-1.

The mechanism by which heparin, but not hirudin, decreases basal synthesis and release of ET-1 remains unknown. Heparin may exert its effects through other endothelium-derived relaxing substances, such as prostacyclin and endothelium-derived relaxing factor, both of which have been shown to inhibit ET-1 release.24,25 However, the involvement of prostacyclin and endothelium-derived relaxing factor in the inhibitory effect of heparin on ET-1 release seems unlikely because neither indomethacin nor L-NMMA exerts any effects on the basal or heparin-induced decrease in ET-1-LI release. Endothelial cells produce heparin-binding growth factors, presently known as acidic (a) and basic (b) fibroblast growth factors (FGFs). It has been shown that in the presence of heparin, aFGF decreases prostacyclin synthesis in human endothelial cells26 and bFGF inhibits endothelial cell proliferation.27 Because FGFs induce receptor-mediated phosphoinositide breakdown and [Ca++] increase in endothelial cells,28 it is possible to speculate that exogenous heparin in higher doses may inhibit phosphoinositide breakdown induced by endogenous FGFs or other yet uncharacterized factors from endothelial cells, thereby leading to a decrease in basal synthesis and release of ET-1.

The present study has further shown that heparin inhibits ET-1-LI release stimulated by Ang II, AVP, and TPA. It has been shown that heparin has a wide variety of inhibitory effects on vascular smooth muscle cells, including inhibition of cell proliferation and migration,2,13 inhibition of induction of proto-oncogenes (c-fos, c-myc) by serum and phorbol esters,4 and inhib-
bition of gene expression of collagenase and tissue-type plasminogen activator. It has been suggested that these inhibitory actions of heparin are mediated by its selective blockade on the protein kinase C-dependent pathway. Furthermore, heparin has been shown to inhibit cyclic AMP–dependent protein kinase and tyrosine kinase other than protein kinase C. In fact, our study has shown that heparin partially inhibits Ang II– and AVP-induced ET-1 release, whereas heparin completely blocks TPA-induced preproET-1 gene expression as well as ET-1-LI release. Because it is well recognized that Ang II and AVP have common signal-transduction systems, consisting of IP3-mediated intracellular calcium mobilization and diacylglycerol-activated protein kinase C pathways, it seems reasonable to speculate that heparin may preferentially inhibit the protein kinase C-dependent pathway over the Ca2+-dependent pathway in endothelial cells.

The inhibitory actions of heparin on basal and agonist-induced ET-1 synthesis and release provide a potential therapeutic implication for its use in preventing the overexpression of the ET-1 gene in the vascular lesions associated with thromboembolic disease, hypertension, and atherosclerosis.

References

Hypertension Vol 21, No 3 March 1993
Heparin has an inhibitory effect on endothelin-1 synthesis and release by endothelial cells.
T Imai, Y Hirata, T Emori and F Marumo

Hypertension. 1993;21:353-358
doi: 10.1161/01.HYP.21.3.353

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1993 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on
the World Wide Web at:
http://hyper.ahajournals.org/content/21/3/353

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/