Effect of Lisinopril and Metoprolol on Arterial Distensibility


Abstract Apart from lowering blood pressure, antihypertensive drugs may influence vessel wall function. In a randomized double-blind study, the effect of lisinopril and metoprolol on arterial distensibility was studied in 40 patients with essential hypertension. After a placebo run-in period, the patients were randomly treated with metoprolol (50, 100, or 200 mg) or lisinopril (5, 10, or 20 mg) for 10 weeks. In the lisinopril group, blood pressure decreased after 10 weeks of therapy from 173±10/102±5 to 155±10/85±3 mm Hg and in the metoprolol group from 167±12/102±4 to 153±8/84±3 mm Hg. Diameter (millimeters), relative change in diameter (percent), and distensibility (10⁻³/kPa) of the left common carotid artery were determined after the placebo run-in period and after 6 and 10 weeks of antihypertensive therapy. A multigate Doppler system was used to measure the vessel wall movements by Doppler analysis in M-mode; blood pressure was recorded by finger plethysmography (Finapres). Neither lisinopril nor metoprolol influenced the end-diastolic diameter of the common carotid artery after 6 and 10 weeks of treatment. In the lisinopril group, a significant increase of percent change in diameter (P<.05 compared with the baseline value; P<.05 compared with the metoprolol group) and distensibility (P<.01 compared with the baseline value; P<.05 compared with the metoprolol group) was observed. The results show that lisinopril but not metoprolol improves arterial distensibility in essential hypertension. Pressure-independent effects of angiotensin converting enzyme inhibitors may be important modulators of adaptive changes in the arterial wall. (Hypertension. 1994;23[suppl I]:I-161-I-163.)

Key Words • hypertension, essential • angiotensin converting enzyme inhibitors

The mechanical properties of the arterial wall depend on medial thickness, smooth muscle tone, and viscoelastic properties of vascular connective tissue. Therefore, pressure-independent changes of arterial distensibility during antihypertensive treatment may reflect changes in medial mass. Interestingly, drugs reducing cardiac hypertrophy similarly improve arterial distensibility, suggesting similar effects on both myocardial and vascular growth stimuli. The ominous prognostic significance of cardiac hypertrophy has been clearly defined. Vascular hypertrophy also may adversely affect the course of hypertension. Folkow convincingly demonstrated that medial hypertrophy perpetuates a vicious cycle in the development of hypertension. Therefore, the pressure-independent effects on vascular smooth muscle function and growth may attract increasing attention in the evaluation of antihypertensive drugs. In the present study, mechanical properties of the arterial wall were assessed during treatment with the angiotensin converting enzyme (ACE) inhibitor lisinopril and the β-blocker metoprolol. Despite similar antihypertensive effects, both drugs differed considerably in their effects on arterial wall properties.

Methods

In a randomized double-blind study, we investigated the effect of antihypertensive therapy with metoprolol and lisinopril on arterial distensibility in 40 patients with untreated essential hypertension. The study was approved by the local ethics committee, and all patients gave their written consent before enrollment. Patients with untreated essential hypertension aged 30 to 60 years with a diastolic blood pressure between 95 and 110 mm Hg on three occasions before and after a placebo run-in period of 1 week were included in the study. The following exclusion criteria were used: hyperkalemia (>5.3 mmol/L), heart failure, myocardial infarction in the last 3 months, cerebral insult in the last 6 months, hepatic or renal disease, and valvular heart disease. Secondary hypertension was excluded by determination of serum creatinine, 24-hour urinary catecholamine excretion, serum potassium, renal sonography, and intravenous digital subtraction angiography.

Two patients of the metoprolol group were excluded from the study after the placebo run-in period because their diastolic blood pressures were lower than 95 mm Hg at that time. The metoprolol group was composed of 12 men and 6 women, aged 47.8±7.5 years; the lisinopril group was composed of 16 men and 4 women, aged 47.6±6.2 years. Body weight was similar between the groups (metoprolol group, 75.8±12.1 kg; lisinopril group, 78.9±10.3 kg).

Blood pressure measurements at the beginning of the study were based on three independent readings with a sphygmomanometer with patients seated after a rest of 10 minutes. The patients were randomly treated with metoprolol or lisinopril for 10 weeks after the placebo run-in period. Antihypertensive therapy was started with 50 mg metoprolol once daily or 5 mg lisinopril once daily; patients were followed up after 2, 6, and 10 weeks. In case of inefficient blood pressure control (diastolic >90 mm Hg), the antihypertensive therapy was increased to 100 mg metoprolol once or twice daily or 10 mg lisinopril once or twice daily. Blood pressure was effectively controlled by 5 mg lisinopril daily in 10 patients, but 50 mg metoprolol daily was sufficient in only 4 patients. In 3 patients treated with metoprolol and 3 patients treated with lisinopril, the highest dose of the antihypertensive monotherapy was required. Systolic and diastolic blood pressures after 2, 6, and 10 weeks of therapy for the metoprolol and lisinopril groups are shown in...
TABLE 1. Blood Pressure Before and After Treatment With Metoprolol or Lisinopril

<table>
<thead>
<tr>
<th>Blood Pressure</th>
<th>Metoprolol (n=18)</th>
<th>Lisinopril (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>After placebo run-in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAP, mm Hg</td>
<td>165.1±11.3</td>
<td>171.9±11.9</td>
</tr>
<tr>
<td>DAP, mm Hg</td>
<td>101.8±4.2</td>
<td>101.5±5.0</td>
</tr>
<tr>
<td>After 2 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAP, mm Hg</td>
<td>159.9±11.6</td>
<td>164.0±10.7</td>
</tr>
<tr>
<td>DAP, mm Hg</td>
<td>94.9±4.9</td>
<td>90.6±5.0</td>
</tr>
<tr>
<td>After 6 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAP, mm Hg</td>
<td>156.1±9.1</td>
<td>157.4±11.2</td>
</tr>
<tr>
<td>DAP, mm Hg</td>
<td>86.8±4.2</td>
<td>86.4±5.9</td>
</tr>
<tr>
<td>After 10 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAP, mm Hg</td>
<td>152.8±8.2</td>
<td>154.5±10.2</td>
</tr>
<tr>
<td>DAP, mm Hg</td>
<td>84.2±2.9</td>
<td>84.6±3.2</td>
</tr>
</tbody>
</table>

SAP indicates systolic arterial pressure; DAP, diastolic arterial pressure. Values are mean±SEM.

Table 1. No significant difference in blood pressure was observed between the groups.

Arterial distensibility was determined after the placebo run-in period and after 6 and 10 weeks of antihypertensive therapy. Vessel wall distensibility was determined in the left common carotid artery. Patients with sonographically proven atherosclerotic lesions in the common carotid arteries were excluded from the study. Patients were examined in the early morning before the antihypertensive therapy was taken. Non-invasive assessment of local vessel wall distensibility was performed by a multigate pulsed Doppler system.8,9 Doppler analysis of vessel wall movements was done in the M-mode. The Doppler signals in M-mode were temporarily stored by a personal computer and analyzed in data windows covering the anterior and posterior vessel walls. Vessel wall movements were continuously recorded for three heartbeats. Calculation of the above-mentioned parameters was based on the simultaneous recording of blood pressure by finger plethysmography (Finapres).10,11

Statistics

Values are given as mean±SEM. The parameters of vessel wall properties were tested for statistical significance by two-way analysis of variance with the Tukey's Studentized Range test as post-test.12 Statistical analysis was performed with the TESTIMATE program (version 5.1, IDV-Gauting, 1992).

Results

The end-diastolic diameter, percent change in diameter, and distensibility of the common carotid artery were not different after the placebo run-in period between the essential hypertensive groups treated with metoprolol and with lisinopril (Table 2). After 6 and 10 weeks of therapy, the end-diastolic diameter of the common carotid artery was not significantly different between the essential hypertensive groups treated with metoprolol and with lisinopril, and in both groups no change in the end-diastolic diameter was observed during antihypertensive therapy. The percent change in diameter of the common carotid artery was significantly higher after 6 and 10 weeks of therapy in the essential hypertensive group treated with lisinopril compared with the baseline value (P<.05) and with the group treated with metoprolol (P<.05, Table 2). The distensibility of the common carotid artery was also significantly increased in the lisinopril group compared with the baseline value (P<.05 compared with the metoprolol group, Figure; P<.01 compared with the baseline value).

TABLE 2. Mechanical Properties of Common Carotid Artery Assessed by Multigate Doppler System Before and After Treatment With Metoprolol and Lisinopril

<table>
<thead>
<tr>
<th>Vessel Parameter</th>
<th>Metoprolol Group (n=18)</th>
<th>Lisinopril Group (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>After placebo run-in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D, mm</td>
<td>7.6±0.2 (7.2-8.0)</td>
<td>7.7±0.2 (7.3-8.1)</td>
</tr>
<tr>
<td>%CD</td>
<td>5.07±0.33 (4.41-5.73)</td>
<td>5.13±0.43 (4.27-5.99)</td>
</tr>
<tr>
<td>DS, 10^-3/kPa</td>
<td>6.2±0.4 (5.4-7.0)</td>
<td>5.6±0.5 (4.6-6.6)</td>
</tr>
<tr>
<td>After 6 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D, mm</td>
<td>7.8±0.1 (7.4-7.8)</td>
<td>7.7±0.2 (7.3-8.1)*</td>
</tr>
<tr>
<td>%CD</td>
<td>5.06±0.36 (4.36-5.8)</td>
<td>5.90±0.47 (4.96-6.84)†‡</td>
</tr>
<tr>
<td>DS, 10^-3/kPa</td>
<td>6.0±0.4 (5.2-6.8)</td>
<td>6.9±0.6 (5.7-8.1)†§</td>
</tr>
<tr>
<td>After 10 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D, mm</td>
<td>7.5±0.2 (7.1-7.9)</td>
<td>7.8±0.2 (7.4-8.2)*</td>
</tr>
<tr>
<td>%CD</td>
<td>4.85±0.37 (4.11-5.59)</td>
<td>5.86±0.46 (4.94-6.78)†‡</td>
</tr>
<tr>
<td>DS, 10^-3/kPa</td>
<td>5.9±0.5 (4.9-6.9)</td>
<td>6.9±0.5 (5.9-7.9)†§</td>
</tr>
</tbody>
</table>

D indicates end-diastolic diameter; %CD, percent change in diameter; and DS, distensibility. Values are mean±SEM; 95% confidence interval is shown in parentheses. For calculation of parameters, blood pressure measured by finger plethysmography was used.

*P=NS.
†P<.05, metoprolol vs lisinopril.
‡P<.05, §P<.01 vs baseline value.
The findings obtained with lisinopril are similar to those ade is known to inhibit smooth muscle proliferation. investigated the effect of perindopril on the distensibility of reported for other ACE inhibitors. Asmar et al.16 inves-

terms effects of metoprolol on arterial distensibility may 

be due to functional rather than structural changes of 

be due to functional rather than structural changes of 

demonstrated in the present study show that pressure-inde-

adept interventions may be important modulators of the 

indeed propranolol did not influence the mechanical 

properties of large arteries.18

In summary, the present study demonstrated differ-

effects of lisinopril and metoprolol on arterial 

distensibility. The findings imply that pressure-indepen-

dent drug effects may be important modulators of the 

The role of antihypertensive drugs in counteracting adverse 

Discussion

The results show that antihypertensive therapy with 

lisinopril but not with metoprolol can improve the 

distensibility of the common carotid artery, although both 

drugs lowered blood pressure effectively. The antihypertensive therapy with an ACE inhibitor therefore 

may influence intrinsic properties of the arterial 

wall in essential hypertension.

Arterial distensibility is significantly decreased in sus-

tained systolic-diastolic hypertension and even in border-

line hypertension. The reduction in arterial disten-

sibility in hypertension seems to be induced by 

modifications of the arterial wall. The viscoelastic prop-

erties of the arterial wall are dependent on a passive 

dcomponent due to elastic and collagenous connective 

tissue and on an active component due to smooth muscle 

activity.12 In hypertension, thickening of the arterial 

wall results from smooth muscle hypertrophy together with 

increased consistency of the fibrous connective tissue.4-5

Antihypertensive therapy may influence the passive 

component of arterial wall properties by its antihyperten-

sive effect per se, but the different effects of β-blocker and 

ACE inhibitor treatments on arterial distensibility dem-

onstrated in the present study show that pressure-inde-

pendent effects are at least equally important. The 

reduced arterial wall stiffness observed with lisinopril may 

be due to functional rather than structural changes of 

vascular smooth muscle, because after 6 weeks of treat-

ment, a maximal improvement of arterial wall disten-

sibility was observed, and no further increase was noted after 

10 weeks. Both decreased levels of angiotensin II due to 

inhibition of the angiotensin converting enzyme and accu-

mulation of bradykinin due to inhibition of kininase II15 

may contribute to this effect. Long-term studies are 

needed to clarify whether the structural changes go in 

parallel with the acute effects on arterial distensibility.

On the other hand, in the metoprolol group arterial 

distensibility did not change despite a significant de-

crease in blood pressure. This may be explained by the 

lack of vasodilation with β-blocker therapy. The long-

term effects of metoprolol on arterial distensibility may 

counteract the acute effects, because β-receptor block-

ade is known to inhibit smooth muscle proliferation. 

The findings obtained with lisinopril are similar to those 

reported for other ACE inhibitors. Asmar et al.16 inves-

tigated the effect of perindopril on the distensibility of 

the brachial artery and found a similar increase in 

arterial distensibility compared with placebo. Also, af-

ter acute intravenous administration of the ACE inhib-

itor enalaprilat, pulse-wave velocity decreased, indi-

cating an increase in distensibility.17 On the other hand, 

the metoprolol effects differ from those observed with acebutolol in brachial arteries.18 Because 

acebutolol, but not metoprolol, exhibits intrinsic βi 
mimetic activity, this discrepancy can be explained by 

the different pharmacologic properties of both drugs. 

Indeed, propranolol did not influence the mechanical 

properties of large arteries.18

In summary, the present study demonstrated differ-


effects of lisinopril and metoprolol on arterial 

distensibility. The findings imply that pressure-indepen-

dent drug effects may be important modulators of the 

adaptive changes in the arterial wall.

References

1. O'Rourke MF. Arterial Function in Health and Disease. Edinburgh, 


2. Dobrin PB. Vascular mechanics. In: Shepherd JT, Abboud FM, 
ed. Handbook of Physiology: Section 2. The Cardiovascular System, 


3. Safar ME, Levy BI, Laurent St, London GM. Hypertension and 

the arterial system: clinical and therapeutic aspects. J Hypertens. 

1990;8(suppl 7):S113-S119.

4. Schwartz SM. Smooth muscle proliferation in hypertension. Hyper-

tension. 1984;9(suppl 1):156-161.

5. Wolinsky H. Response of the rat aortic media to hypertension. Circ 


6. Folkow B. Structure and function of the arteries in hypertension. 


7. Folkow B. Physiological aspects of primary hypertension. Physiol 


8. Reneman RS, van Merode T, Hick T, Hoes APG. Cardiovascular 

applications of multi-gate pulsed Doppler systems. Ultrasound Med 


9. Hoes APG, Brands PJ, Reneman RS. Technical aspects of com-


10. Weiseling KH. Noninvasive continuous blood pressure waveform 

measurement by the method of Penaz. Scrz Medica. 1984;57: 

321-334.

11. Parazi G, Casadei R, Groppelli A, Di Rienzo M, Mancia M. Com-

parison of finger and intra-arterial blood pressure monitoring at rest 


WPS-Kent; 1990.

13. Ventura H, Maserati FH, Ogmvan W, Suarez DH, Dreslinski GR, 

Dunn FG, Reisin E, Frohlich ED. Impaired systemic arterial com-


14. Safar ME, Laurent S, Pannier BM, London GM. Structural and 

functional modifications of peripheral large arteries in hyper-


15. Wiemer G, Schoekens BA, Becker RHA, Busse R. Ramiprilat 

enhances endothelium-derived bradykinin formation by inhibiting breakdown of 


Bl, Safar ME. Reversion of cardiac hypertrophy and reduced 

arterial compliance after converting enzyme inhibition in essential 


17. Levenson J, Chau NP, Billaud E, Simon A. Unrelated responses of 

brachial artery hemodynamics and renin-angiotensin system to 

acutely converting enzyme inhibition by enalaprilat in essential 


18. Levenson J, Quan Sang KHL, Devynck MA, Gitel R, Simon A. 

The role of antihypertensive drugs in counteracting adverse 


19. Simon AC, Levenson JA, Bosphier JD, Safar ME. Effects of 

chronic enalapril and propranolol on the large arteries in essential 

Effect of lisinopril and metoprolol on arterial distensibility.
M Barenbrock, C Spieker, A P Hoeks, W Zidek and K H Rahn

Hypertension. 1994;23:I161
doi: 10.1161/01.HYP.23.1_Suppl.I161

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/23/1_Suppl/I161