Expression of Nitric Oxide Synthase by Cytokines in Vascular Smooth Muscle Cells

Masanobu Koide, Yasuhiro Kawahara, Terutaka Tsuda, Ichiro Nakayama, Mitsuhiro Yokoyama

Abstract In cultured vascular smooth muscle cells, the baseline mRNA and protein levels of an inducible type of nitric oxide synthase were barely detectable. Interferon gamma, tumor necrosis factor-α, and interleukin-1β each markedly increased mRNA and protein levels of this enzyme in parallel with the production of nitrite, a stable oxidative metabolite of nitric oxide. Actinomycin D abolished the cytokine-induced increases in mRNA levels and nitrite production. Cycloheximide, which abolished the cytokine-induced increase in nitrite production, had no effect on the interferon-gamma-induced increase in mRNA levels but partially inhibited that induced by interleukin-1β and markedly inhibited that induced by tumor necrosis factor-α. Transforming growth factor-β, which inhibited the interferon gamma-, interleukin-1β-, and tumor necrosis factor-α-induced nitrite production, did not affect the increases in mRNA levels caused by these cytokines. Transforming growth factor-β1, however, significantly inhibited the increase in protein levels caused by these cytokines. These findings suggest that interferon gamma directly induces the expression of the inducible nitric oxide synthase gene, whereas tumor necrosis factor-α and interleukin-1β induce it, at least in part, via the induction of intermediary protein(s), and that transforming growth factor-β1 inhibits cytokine-induced nitric oxide production by blocking the posttranscriptional synthesis of inducible nitric oxide synthase.

Key Words • nitric oxide • interferons • tumor necrosis factor • transforming growth factor-β • muscle, smooth, vascular

In addition to its powerful vasodilating action, nitric oxide (NO) is thought to have diverse effects in blood vessels, including inhibition of adhesion and aggregation of platelets, superoxide anion production, leukocyte adhesion, endothelin generation, and the proliferation of vascular smooth muscle cells (VSMCs). Recent studies have clearly shown that VSMCs express a system that generates NO from l-arginine only after treatment with endotoxin or inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). NO thus produced has been implicated not only in sepsis-related systemic hypotension and other inflammatory cell functions but also in the pathogenesis of atherosclerosis and hypertensive vascular lesions in which infiltration of inflammatory cells occurs. Recently, it has been shown that transforming growth factor-β (TGF-β) inhibits the cytokine-induced NO production by macrophages, renal mesangial cells, and VSMCs, suggesting that TGF-β may be an endogenous modulator of NO production. Although the findings of previous biochemical and pharmacological studies strongly suggest that IL-1β and TNF-α induce the expression of an inducible type of NO synthase (iNOS) gene and that TGF-β inhibits the expression of that gene in VSMCs, the mechanisms by which these cytokines regulate iNOS expression remain unclear.

Recently, cDNA encoding iNOS has been cloned from a macrophage-derived cell line that has been activated by interferon gamma (IFN-γ) and endotoxin, and it has been shown that IFN-γ and endotoxin stimulate the transcription of the iNOS gene in this same cell line. In a preceding report, we demonstrated that IFN-γ and TNF-α induced the increase in iNOS mRNA in cultured VSMCs. We also showed that cycloheximide had no effect on the IFN-γ-stimulated increase in iNOS mRNA but markedly inhibited the TNF-α-stimulated increase, suggesting that IFN-γ directly induces the expression of the iNOS gene, whereas TNF-α induces it via the induction of an intermediary protein or proteins. In the present study, we measured not only the iNOS mRNA and nitrite, a stable oxidative metabolite of NO, but also the iNOS protein by immunoblotting with an antibody raised against iNOS and examined the effects of IFN-γ, IL-1β, TNF-α, and TGF-β1 on iNOS mRNA and protein levels and on nitrite production in cultured VSMCs in order to investigate the mechanisms by which the inflammatory cytokines regulate NO production in VSMCs.

Methods

VSMCs were isolated from rat thoracic aorta by enzymatic dissociation as described previously and used at passage levels 9 through 16. Although VSMCs from one isolate were used for the experiments reported here, almost identical results were obtained using VSMCs from another isolate. The mouse monococyte-macrophage cell line J774A.1 was obtained from Japanese Cancer Research Resources Bank, Tokyo, Japan. Recombinant mouse IFN-γ (1×10⁵ U/mg), TNF-α (4×10⁵ U/mg), and human platelet TGF-β1 (1×10⁵ U/mg) were purchased from Genzyme, Cambridge, Mass. Recombinant human IL-1β (2×10⁵ U/mg) was a gift from Otsuka Pharmaceutical Co, Ltd, Tokushima, Japan. Lipopolysaccharide (LPS) (from Escherichia coli 055:B5) and nitrate reductase (10 U/mL) were from Sigma Chemical Co, St Louis, Mo, and Boehringer Mannheim Yamanouchi, Tokyo, Japan, respectively. [α-32P]Deoxyxytidine triphosphate (3000 Ci/mmol) was from Amersham Japan, Tokyo. A polyclonal antibody against rat liver iNOS was kindly provided by Dr Hiroyasu Esami, National Cancer Center Research Institute, Tokyo, Japan. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) cDNA was a gift from Dr Kimihiko Sano, Kobe University School of Medicine, Kobe, Japan. Other materials and chemicals were obtained from commercial sources.
Results and Discussion

Treatment of VSMCs with each of IFN-γ, IL-1β, and TNF-α resulted in marked nitrite production (Fig 1A). Under identical conditions, these cytokines also increased iNOS mRNA levels (Fig 1B). Protein levels of iNOS were also increased after exposure to each of IFN-γ, IL-1β, and TNF-α (Fig 1C). The dose dependencies and time courses of the IFN-γ-, IL-1β-, and TNF-α–induced increases in iNOS mRNA were similar to those of the increases in iNOS protein caused by the corresponding cytokines. They also correlated well with those of the nitrite production (data not shown). These results clearly indicate that IFN-γ, IL-1β, and TNF-α induce iNOS mRNA and protein expression in VSMCs. We then made use of two types of metabolic inhibitors, actinomycin D, a DNA-dependent RNA transcription inhibitor, and cycloheximide, a protein synthesis inhibi-
Fig 2. Graph shows inhibition by transforming growth factor-β (TGFβ) of interferon gamma- (IFN-γ), interleukin-1β- (IL-1β-), and tumor necrosis factor-α- (TNF-α-) induced nitrite production. Vascular smooth muscle cells were stimulated with interferon gamma (100 U/mL) (•), interleukin-1β (100 ng/mL) (○), tumor necrosis factor-α (100 ng/mL) (□), or vehicle (◦) in the presence of various concentrations of TGFβ1 for 24 hours. Nitrite accumulated in the culture medium was measured (n=3). *Significantly lower than nitrite production in the absence of TGFβ1.

Fig 3. Northern blot shows effects of transforming growth factor-β (TGFβ) on interferon gamma (IFN-γ), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) induced expression of inducible nitric oxide synthase mRNA. Vascular smooth muscle cells were stimulated with IFN-γ (100 U/mL), IL-1β (100 ng/mL), or TNF-α (100 ng/mL) in the absence or presence of TGFβ1 (10 ng/mL) for 24 hours. Total RNA was analyzed by Northern blotting with inducible nitric oxide synthase (upper) and GAPDH (lower) cDNA probes.

Inhibition of NO production by TGF-β was first described for macrophages activated by IFN-γ and then described for renal mesangial cells stimulated by IL-1β or TNF-α. In these initial studies, TGF-β was thought to act at the early stages of the induction of iNOS, because the presence of TGF-β during the early induction phase was required for the inhibition and TGF-β was inactive once cells had been stimulated by the cytokines. Recently, Junquero et al. have shown that TGF-β1 inhibits IL-1β-induced NO production in human cultured VSMCs. Consistent with the previous observations, TGF-β1 dose-dependently inhibited the nitrite production stimulated by IFN-γ, IL-1β, and TNF-α (Fig 2). TGF-β1 appeared to be less effective when IFN-γ was used for stimulation. To locate the inhibitory effect of TGF-β1 in the pathway leading to NO production, we examined whether TGF-β1 inhibits the induction of iNOS mRNA and protein by IFN-γ, IL-1β, and TNF-α. As shown in Fig 3, TGF-β1 by itself induced a small increase in iNOS mRNA levels, but it had no effect on the increase in iNOS mRNA levels resulting from administration of IFN-γ, IL-1β, and TNF-α. As shown in Fig 4,
The functional consequences of the formation of NO by iNOS in VSMCs have not been clearly determined. Because massive infiltration of inflammatory cells was observed in vascular lesions in hypertensive animals, it seems possible that NO synthesized in VSMCs may modulate the formation of hypertensive vascular lesions. NO may decrease the severity of such vascular lesions via its inhibitory effects on adhesion and aggregation of platelets, superoxide anion production, leukocyte adhesion, endothelin generation, and VSMC proliferation. On the other hand, NO may function as a potentially damaging molecule because it reacts with superoxide anions, resulting in the formation of peroxynitrite, which decays to nitrogen dioxide and hydroxyl radical, the strongest oxidant in biological systems.

Acknowledgments

This study was supported in part by grants from the Yamamoto Foundation for Research on Metabolic Disease (1992) and the Mochida Memorial Foundation for Medical and Pharmaceutical Research (1992). We thank Dr. Hironobu Esumi for generously providing the anti-iNOS antibody. We also thank Noriko Sasaki for her skillful technical assistance.

References


Expression of nitric oxide synthase by cytokines in vascular smooth muscle cells.
M Koide, Y Kawahara, T Tsuda, I Nakayama and M Yokoyama

*Hypertension*. 1994;23:I45
doi: 10.1161/01.HYP.23.1_Suppl.I45

*Hypertension* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1994 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/23/1_Suppl/I45