Is Ouabain an Authentic Endogenous Mammalian Substance Derived From the Adrenal?

Peter A. Doris, Leigh Ann Jenkins, Douglas M. Stocco

Abstract Ouabain has recently been reported to be an endogenous mammalian substance released by the adrenal cortex and present in normal plasma. We have attempted to confirm and extend this observation. Using a ouabain radioimmunoassay developed in this laboratory, we fractionated by high-performance liquid chromatography (HPLC) normal human plasma from healthy volunteers to determine the presence of ouabain immunoreactivity and compare this immunoreactivity with authentic ouabain. In most subjects no ouabain immunoreactivity that coeluted with authentic ouabain was observed. Some subjects had ouabain-immunoreactive material present at low levels, but it was largely attributable to cross-reactivity with diverse substances found not to be ouabain. Similar results were obtained after analysis of plasma collected from 10 patients entering a medical intensive care unit. Studies of serum-free medium conditioned by bovine adrenocortical cells showed some ouabain immunoreactivity. To determine whether this material might be a steroid product of cholesterol side-chain cleavage, we performed chemical blockade of steroidogenesis, which effectively suppressed progesterone production by these cells but had no consistent effect on ouabain immunoreactivity in this medium. Stimulation of steroidogenesis with 22-R-OH-cholesterol in bovine adrenocortical cells did not produce any increase in the ouabain immunoreactivity present in conditioned medium. Subsequent HPLC studies of ouabain immunoreactivity in bovine adrenocortical cell-conditioned medium indicated that authentic ouabain did not account for most of the ouabain immunoreactivity in serum-free medium. Studies with bovine adrenocortical cells incubated in a minimal salt and glucose medium indicated a small peak of immunoreactivity that may correspond to authentic ouabain. Examination of ouabain immunoreactivity in serum-supplemented medium conditioned by the murine adrenocortical tumor cell line Y1 indicated much higher levels of immunoreactivity; however, the major portion of this immunoreactivity eluted during reversed-phase HPLC with much lower polarity than authentic ouabain. These studies indicate only a weak likelihood that ouabain is a biologically relevant product of the mammalian adrenal cortex.

Key Words: • adrenal cortex • cardiac glycosides • tissue culture • chromatography, high-performance liquid • radioimmunoassay • ouabain

Numerous studies have attempted to identify and evaluate potential endogenous regulators of sodium-potassium ATPase activity that function via the cardiac glycoside binding site on this enzyme.1-3 Of the candidate materials identified, none met the necessary criteria of specificity, selectivity, effective concentration range in plasma, and evidence for physiologically meaningful alterations in plasma levels until recent studies indicating that ouabain, or a stereoisomer of ouabain, was an endogenous mammalian material, apparently derived from the adrenal cortex.4-6

This observation is surprising for a variety of reasons. Ouabain previously has been known only as a plant-derived material. The sugar rhamnose, which is attached to the C3 position of the A ring of the ouabain steroid nucleus, has previously been considered a plant sugar, and there is only sparse evidence for its utilization in mammalian metabolism.7-9 Furthermore, ouaabain is a highly polar steroid because of multiple hydroxylation of the steroid nucleus. The finding that ouabain was released by adrenocortical cells1 implied that such multiple hydroxylations of the steroid nucleus occurred in the adrenal cortex. Expression of such a broad array of cytochrome P-450 oxidases in the adrenal cortex is without precedent. This is particularly true of 14-β-hydroxylase, which is presumably required to place the C and D rings of the steroid nucleus in the cis configuration typical of plant-derived cardiac glycosides, but it is without precedent in studies of mammalian adrenal steroid metabolism. There is also the problem of how secretion of such a polar steroid across the cell membrane might be accomplished. It is further surprising in that the group identifying ouabain10 had previously indicated that the major cardiac glycoside-like material they were purifying from human plasma had some properties that distinguished it from ouabain. However, none of these concerns is sufficient to discount the strong evidence produced that ouabain was an authentic mammalian compound and that cultured adrenocortical...

Received May 25, 1993; accepted in revised form February 16, 1994.

From the Departments of Cell Biology and Anatomy (P.A.D.), Internal Medicine (L.A.J.), and Biochemistry and Molecular Biology (D.M.S.), Texas Tech University Health Sciences Center, Lubbock.

Correspondence to Dr Peter A. Doris, Department of Cell Biology and Anatomy, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
cells release material that is cardiac glycosidelike by a number of criteria, we have examined the adrenal production of ouabain in further detail.

Methods

Human subjects

Healthy volunteers

Whole blood from six subjects was collected from an antecubital vein into heparinized vacuum tubes. All subjects were healthy and not being treated for any illness at the time of sampling. They were aged between 23 and 30 years; five were male and one was female. Between 30 and 40 mL of blood was collected into heparinized tubes and rapidly centrifuged to collect plasma. The plasma was stored frozen until extraction for high-performance liquid chromatography (HPLC) and immunooassay.

Medical Intensive Care Unit Patients

Blood samples (15 to 20 mL) were similarly drawn from 10 patients being admitted to the MICU/CCU for evaluation and treatment of a range of conditions. Five patients were female, five male. Ages ranged from 30 to 71 years. Four patients had congestive heart failure (CHF, grades II through IV on the New York Heart Association scale). Two patients were hypertensive when samples were drawn (230/130 and 180/110 mm Hg, respectively); one of these was comatose after cerebrovascular hemorrhage (prior medications were unknown). Three patients had a history of hypertension but were not hypertensive when samples were drawn. Three patients were known to be taking digoxin when samples were collected. Two patients were in renal failure, one in association with diabetes and coronary artery disease and the other with CHF. The use of material from human subjects in these studies was approved by the Institutional Review Board.

Tissue Culture Studies

Studies were performed on two types of cultured cells. Primary bovine adrenocortical cells (BAC) and murine adrenocortical tumor cells (Ya) were both obtained from American Type Culture Collection and maintained and passaged according to the supplier's recommendations. Cells were grown in T-75 flasks. Studies with Ya cells involved collection of growth medium conditioned by cells as they grew from an adherent monolayer to cardiac glycosides. Cross-reactivity with pregnenolone, corticosterone, and aldosterone was less than 0.01% and with progesterone less than 0.025%. Cross-reactivity with digoxin was 4.5% and with ouabagenin was 56.2%.

Progesterone was measured by a radioimmunoassay fully described previously. 15

Sample Preparation

Before HPLC or radioimmunoassay, samples of plasma or medium were prepared by solid-phase extraction using disposable octadecyl silica-packed cartridges (Bond Elut, Varian Associates). After the cartridges were wetted with methanol, followed by a water rinse, samples were slowly drawn over the cartridges, which were then rinsed with Tris base (10 mmol/L, pH 7.4). Elution was performed using 25% acetonitrile in water or 80% methanol in water. Both of these elution systems yield greater than 95% recovery of tritiated ouabain extracted from normal plasma or tissue culture medium. These procedures and materials are similar to those reported by Hamlyn and colleagues. 4

High-Performance Liquid Chromatography

HPLC studies used a Rabbit gradient HPLC system and a Microsorb MV (25 cm x 4.6 mm) C18 column (Rainin Instrument Co Inc) (clinical subject) or a µBondapak (25 cm x 4.6 mm) C18 column (Waters Chromatography Division) (all other samples). A gradient elution profile was developed with a linear increase of acetonitrile concentration in 0.1% trifluoroacetic acid. Eluted materials were collected into 12×75-mm disposable glass tubes as 1- or 2-minute fractions, and the solvent was evaporated from the fractions under an air stream. Dried fractions were reconstituted in buffer before being assayed for ouabain content. Blank injections (100 µL starting solvent) were routinely performed to evaluate carryover from prior analyses.

Radioimmunoassays

Anti-ouabain antiserum was raised in a rabbit by subcutaneous inoculation in Freund's adjuvant of an antigen composed of ouabain coupled to bovine serum albumin via reductive amination essentially as described by Butler and Tse-Eng. 14 After several boosts, antiserum was obtained that was used to develop a radioimmunoassay. This assay used commercial tritiated ouabain (NEN-Du Pont) and was performed in 290 mmol/L Tris-HCl buffer, pH 7.4. The assay was incubated at room temperature for 1 to 2 hours. The antisera was used at a final dilution of 1:2000. At this concentration approximately 25% of total radioactivity added to the assay tube is bound by the antisera in the absence of unlabeled ouabain. Separation of bound from free label was performed with goat anti-rabbit y-globulin and 25% polyethylene glycol. Supernatant was aspirated and the pellet solubilized in 100 µL of 1 mol/L NaOH, which was then neutralized with 1 mol/L HCl. The solubilized pellet was then added to scintillation fluid and counted on an LS6800 counter (Beckman Instruments). The displacement curve produced by increasing doses of unlabeled ouabain was fitted to a four-parameter logistic model by the least-squares method; typical correlation coefficients exceeded 0.98. The typical estimated dose at 50% displacement of bound label (ED50) for the standard curve was 350 pg. The antisera was highly specific and able to recognize steroids unrelated to cardiac glycosides. Cross-reactivity with pregnenolone, corticosterone, and aldosterone was less than 0.01% and with progesterone less than 0.025%. Cross-reactivity with digoxin was 4.5% and with ouabagenin was 56.2%.

Progesterone was measured by a radioimmunoassay fully described previously. 15

Results

A typical standard curve from the ouabain immunooassay is shown in Fig 1. Measurements of ouabain immunoreactivity (OI) in 2 mL plasma from six healthy subjects extracted from C18 Bond-Elut columns with 25% acetonitrile indicated that OI was below the limits of detection in these subjects (this corresponds to a plasma concentration of less than 76.4 pmol/L).

Fig 2 shows the HPLC elution profile of ouabain-immunoreactive material in extracts of 10 mL plasma from each of six subjects and compares this elution with the elution of authentic ouabain (Sigma Chemical Co). As can be seen, there is little concordance between authentic ouabain and the ouabainlike immunoreactivity present, indicating that little, if any, authentic ouabain is normally present in human plasma.

In the patient population results were similar to those in the healthy population. Only two patients had OI in
plasma, which coeluted with authentic ouabain on HPLC. One individual had a plasma level of authentic ouabain (determined as coelution on HPLC with authentic ouabain) of 29.3 pg/mL (50.1 pmol/L); another had a level of 12.2 pg/mL. The first patient was diagnosed with tricuspid regurgitation and supraventricular tachycardia. This patient had a history of hypertension but was normotensive when studied. The second patient also had a history of hypertension and was admitted with fever and chest pain and subsequently diagnosed with influenza and musculoskeletal chest pain. Only one other patient showed any detectable OI; this patient had a single OI peak that represented a material much less polar than ouabain and was equivalent to 29.3 pg/mL ouabain. This patient was taking digoxin, although two other patients taking this drug did not show OI in any fraction.

Experiments on cultured BAC were performed to attempt to replicate the report that OI is released into serum-free DMEM/F12 medium by these cultures.4 Extracts of medium conditioned for 2 hours were found to contain 96.4±28.9 pg/mL of OI.

Cholesterol SCC is a step common to adrenal steroidogenic pathways, and because ouabain is a steroid and other vertebrate cardiotonic steroids (bufodi-enolides) have been shown to be synthesized from cholesterol,6 experiments were performed to determine whether inhibition of cholesterol SCC and further metabolism of pregnenolone would alter the OI appearing in conditioned medium. These experiments were performed in a double crossover design. One set of cultures was incubated first in the absence of inhibitors of cholesterol SCC (aminoglutethimide) and pregnenolone metabolism (SU 10603 and cyanoketone). Another set of cultures was treated with these agents. After 2 hours of incubation, medium was collected, the cultures were rinsed, and the treatments were reversed for another 2-hour period. As can be seen in Fig 3, progesterone levels in BAC-conditioned medium were readily inhibited by this treatment; however, no significant effects on OI in conditioned medium were observed.

In experiments performed to determine whether the biosynthesis of OI could be increased by culturing BAC in the presence of the cholesterol SCC substrate 22-R-OH-cholesterol, no significant effect on the presence of OI in extracts of conditioned medium was observed. However, large increases in progesterone production were measured, indicating that cholesterol SCC and resulting steroidogenesis were highly amplified by this treatment (Fig 4).

To determine whether the material responsible for the OI in BAC-conditioned medium was authentic ouabain, we analyzed 200 mL of conditioned medium by Bond-Elut extraction and reversed-phase HPLC. Fig 5 shows the elution profile of OI in this system. Elution of authentic ouabain occurs in fraction 6 in this system. A small amount of OI was observed in this peak; however, the pattern of all OI appeared to correlate with the elution of phenol red indicator derived from the culture medium, and similar peaks were observed in unconditioned medium (data not shown). To eliminate problems caused by possible interference from complex molecules in serum-free DMEM/F12, we repeated these experiments using a minimal salt medium (Krebs-Ringer bicarbonate glucose solution). Again, small peaks of OI were observed (Fig 6), and the largest peak corresponded to authentic ouabain. However, the
amount of material present was low, and there were other adjacent peaks that could not be attributed to ouabain.

Finally, we compared OI in extracts derived from a pool of serum-supplemented medium that had been conditioned by the murine adrenocortical tumor cell line Y1 with immunoreactivity present in a similar volume of unconditioned, serum-supplemented medium. Previous studies in this laboratory have indicated the presence of cardiac glycoside-like material in this medium, but the major active fractions were not found to correspond to ouabain in these earlier studies. After extraction and HPLC purification of a large pool of conditioned medium, OI was found at different levels dispersed across the elution profile (Fig 7). Essentially no ouabain was observed in the fractions corresponding to authentic ouabain. There appeared to be a major peak of immunoreactivity that eluted later with the less polar material. This peak may correspond to the peak of digoxin immunoreactivity that has been previously described in this medium but that is not attributable to authentic digoxin.

Discussion
The recent publication of a series of studies identifying ouabain, or a substance differing only in stereoisomerism of the rhamnose moiety, as an apparently endogenous mammalian material represented an important observation in the long search for biologically relevant endogenous inhibitors of the sodium pump that operate through the cardiac glycoside receptor. Although the result was surprising, the purification procedures were quite rigorous, and there is little reason to expect that the experiments might have produced a false-positive result. Nevertheless, so surprising a result requires the independent confirmation and validation that was the anticipated outcome of the present study. However, significant differences have been found in the present study, requiring that the conclusion that ouabain is a biologically relevant endogenous mammalian compound be treated with caution.

Ouabain has been previously identified in a large pool of human plasma-derived material. This pool was subject to dialysis, amberlite resin extraction, preliminary preparative-scale HPLC, affinity chromatography on purified

![Figure 3](image_url)

Fig 3. Top, Bar graph shows ouabain immunoreactivity (IR) in bovine adrenocortical cell culture-conditioned medium extracted with 80% methanol on 1-mL C18 Bond-Elut cartridges. During period 1, six cultures were incubated in the absence of and six in the presence of aminoglutethimide (AG), SU 10603 (SU), and cyanoketone (CK). No significant effects on ouabain IR in conditioned culture medium were observed. After 2 hours, treatments were reversed, and again no significant effects on ouabain IR in extracts of conditioned medium were observed. Bottom, Bar graph shows effect of these treatments on accumulation of progesterone. Progesterone secretion was dramatically reduced in the presence of these inhibitors of steroidogenesis. ***P<.001 by Student's t test.

![Figure 4](image_url)

Fig 4. Bar graph shows effect of addition of 22-R-OH-cholesterol (22R) on ouabain immunoreactivity (IR) of C18 Bond-Elut extracts of bovine adrenocortical cell-conditioned medium and on progesterone (Progest) secretion into the medium. ***P<.001 by Student's t test.
Authentic ouabain was eluted in fraction 6 in this system. Ouabain IR peaks corresponded closely to the elution of phenol red indicator from the culture medium.

In view of these findings we have sought to confirm that the majority of the immunoreactivity could be attributed to authentic ouabain. Conditioned medium from the murine adrenocortical tumor cell line is an enriched source of material that is cardiac glycosidelike in a variety of assay systems and that appears to have lower levels of plasma OI.

Our studies of clinical subjects reveal a pattern very similar to that obtained in the healthy volunteers. Authentic ouabain was present in only 2 of 10 subjects, and the levels were much lower than those reported previously from CHF patients. Indeed, no authentic ouabain was found in plasma from any of the CHF patients in this study. These findings indicate that measurements of plasma OI in simple plasma extracts using some immunoassays can lead to falsely elevated measures of ouabain that are not attributable to authentic ouabain. To determine whether plasma ouabain-immunoreactive materials are attributable to authentic ouabain, the results of immunoassays must be validated by further purification of plasma after simple solid-phase extraction. Although material behaving as authentic ouabain was occasionally found in plasma on HPLC, its level is sufficiently low to make its biologic significance as well as endogenous origin subject to question.

Previous reports that the most highly enriched tissue source of ouabain was the adrenal cortex were consonant with our own previous observation that adrenal tissue is an enriched source of material that is cardiac glycosidelike in a variety of assay systems and that appears to be released from explanted glandular tissue and cultured adrenocortical cells. Our present corresponds to authentic ouabain by extraction and HPLC purification of plasma. A relatively sensitive and robust assay system has been developed and the antisera evaluated for cross-reactivity. Our results indicate that although small amounts of OI may be present in plasma, little of this immunoreactivity can be accounted for by authentic ouabain either in healthy young subjects or in patients receiving care in a medical intensive care unit. Although the sensitivity of our assay is limited by the use of a tritium tracer, the levels of plasma ouabain reported in assays using the same extraction technique in conjunction with an enzyme-linked immunoassay method (ELISA) have produced normal plasma values readily detectable using the sample volumes employed in the present study. Thus, in our measurements of 2-mL aliquots of plasma our assay should be able to detect any levels greater than 80 pmol/L. This value is approximately half the level of plasma OI initially reported in healthy human subjects, although subsequent reports from the same group have shown a surprising upward drift in the basal plasma ouabain levels observed. Therefore, we do not believe our results can be attributed to false-negative error.

Our results can be attributed to false-negative error.
produced by the gland, the diffuse pattern of ouabain cross-reactivity in HPLC fractions of plasma and adrenal-conditioned medium suggests that even the small amount of material coeluting as authentic ouabain may in fact represent a nonspecific interference. The dissonance between our findings and others that identified mammalian ouabain cannot be attributed to significant differences in methodologies, because we carefully emulated the solid-phase extraction procedures previously described. Although our immunoassay was different in that it used dissolved rather than solid surface–linked materials, there is no reason to expect this to account for any difference in ouabain measurement. A recent review indicated some differences in the ouabain levels present in plasma extracts and adrenal tissue extracts. Although our immunoassay produced lower values than ELISA, and the identification of ouabain in human plasma extracts the same as that used in the final purification step in the identification of ouabain in human plasma extracts produced by the gland, the diffuse pattern of ouabain cross-reactivity in HPLC fractions of plasma and adrenal-conditioned medium coelution with authentic ouabain on HPLC. Our present findings provide little support for the possibility that ouabain is secreted from these cells when incubated in serum-free conditions. The failure of 22-R-OH-cholesterol to increase OI in this system while producing very large increases in progesterone levels in medium provides two possible conclusions: first, that ouabain is not synthesized in these adrenocortical cells via cholesterol SCC or, alternatively, that ouabain is not synthesized in these adrenocortical cells at all.

This attempt to independently verify the presence of ouabain in normal human plasma and in plasma from patients with cardiovascular disease and to demonstrate its synthesis in serum-free conditions by adrenocortical cells in culture leads us to conclude that ouabain is unlikely to be an endogenous mammalian cardiotonic steroid.

Acknowledgments
This work has been supported in part by grant DDK45538 from the National Institutes of Health, Bethesda, Md. We are grateful to Debbie Alberts and Chip Shaw for technical assistance and to the nursing and support staff of the MICU, University Medical Center, for their cooperation in obtaining patient material.

References
Is ouabain an authentic endogenous mammalian substance derived from the adrenal?

P A Doris, L A Jenkins and D M Stocco

Hypertension. 1994;23:632-638
doi: 10.1161/01.HYP.23.5.632

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1994 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/23/5/632

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Hypertension_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Hypertension_ is online at:
http://hyper.ahajournals.org//subscriptions/