Endothelial Adhesion Molecules and Leukocyte Integrins in Preeclamptic Patients

Hermann Haller, Eva-Maria Ziegler, Volker Homuth, Marek Drab, Jens Eichhorn, Zsuzsanna Nagy, Andreas Busjahn, Klaus Vetter, Friedrich C. Luft

Abstract

Endothelial cell activation is important in the pathogenesis of preeclampsia, however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia, 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations ([Ca^{2+}]_i) in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay [ELISA], was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca^{2+}]_i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca^{2+}]_i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = 0.8, P < 0.001) before but not after delivery. Expression of the integrin counter receptors on leukocytes was similarly increased in preeclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca^{2+}]_i. The effect on cultured endothelial cells and the rapid decrease after delivery suggests the presence of a circulating serum factor which increases endothelial cell [Ca^{2+}]_i and enhances adhesion molecule expression (Hypertension. 1997;29[part 2]:291-296.)

Key Words: preeclampsia • adhesion molecules • VCAM • ICAM • endothelial cells • integrins • leukocytes

Intact endothelial cells have antiahesive and anticoagulant properties, regulate vascular permeability, and modulate the effect of vasoconstrictor agonists on the vessel wall. Several lines of evidence support the hypothesis that dysfunction of the vascular endothelium is important in the pathogenesis of preeclampsia. The vascular response to vasoconstrictors in preeclamptic women is greatly enhanced, the tendency for coagulation is increased, the capillaries are more permeable, the plasma concentrations of endothelin and fibronectin are elevated. Glomerular capillary endothelial cells show characteristic signs of endothelial cell dysfunction. Indirect evidence suggests that endothelial cell leukocyte adhesion is also altered in preeclampsia, however, neither expression of endothelial cell adhesion molecules nor the leukocyte counterreceptor integrins have been investigated.

Endothelial cell leukocyte adhesion is mediated by four classes of adhesion molecules, the selectins, carbohydrate-containing selectin ligands, integrins, and immunoglobulin-like (Ig-like) molecules. The interaction between integrins on the surface of leukocytes and Ig-like molecules on endothelium is necessary for stable adhesion to the endothelial cells. The Ig-like adhesion molecules on the endothelium are ICAM-1 and VCAM-1. The integrins are heterodimeric glycoproteins, composed of noncovalently associated α and β subunits and are classified according to the structure of their β subunits. In general, members of each class share a common β subunit and are distinguished by their unique α subunit. The four integrins that appear most important in leukocyte-endothelial adhesion are three β2 integrins, each with a different α subunit, and one β1 integrin. The β1 integrin is the VLA-4 integrin, also termed α4β1 according to the integrin nomenclature, or CD49/CD29 according to the CD nomenclature. The three β2 integrins share the β2 chain (CD18) and are named LFA-1, also termed αLβ1 or CD11a/CD18; MAC-1, also termed αMβ2 or CD11b/CD18; and the glycoprotein p150,95, also termed αXβ2 or CD11c/CD18.

Evidence exists for an as yet unidentified circulating factor which is released from the hypoxic placenta into the maternal circulation in preeclampsia. This factor may lead to endothelial cell activation and subsequently to endothelial cell dysfunction. Studies using serum from preeclamptic women have shown that cultured endothelial cells respond with an increased expression and release of growth factors and fibronectin, induction of oxygen radicals, as well as an inhibition of prostacyclin production. We tested the hypothesis that serum from preeclamptic patients induces expression of ICAM-1 and VCAM-1 on cultured endothelial cells. In addition, since signaling for such expression is known to involve cytosolic calcium [Ca^{2+}], we tested for expression of ICAM-1 and VCAM-1 on cultured endothelial cells.
dothelial cell activation by measuring [Ca$^{2+}$]. We also asked whether or not the integrin adhesive counter-receptors LFA-1 (CD11a/CD18), MAC-1 (CD11b/CD18), p150,95 (CD11c/CD18) and VLA-4 (CD49/CD29) were increased compared with normal pregnant and nonpregnant women.

Methods

Patients

Fifty-one pregnant women were recruited from the Department of Obstetrics and Gynecology of the city hospitals in Buch and Neukölln, Berlin, Germany. Twenty-two women had preeclampsia defined by hypertension, proteinuria, and hypertension or evidence of renal disease. All women gave signed, informed consent as determined by our committee on human subjects. Prepartum blood samples were obtained ~24 hours before delivery. Blood samples after delivery were obtained from term pregnant patients, ~5.3 mg/dL. Both groups were similar in age and body weight (preeclampsia group 19 to 42 years, mean age 28 years, mean body weight 68 ± 7 kg; preeclampsia group 19 to 42 years, mean age 28 years, mean body weight 59 ± 8 kg). Eighteen hypertensive women were included in the study. Five were in the preeclampsia group (preeclampsia group 19 to 42 years, mean age 28 years, mean body weight 59 ± 8 kg). Eighteen hypertensive women were included in the study.

Culture Procedures for Endothelial Cells

Human umbilical vein endothelial cells were isolated from umbilical cords by chymotrypsin treatment as previously described. The cords were cleaned with isotonic NaCl buffer at room temperature and were incubated for 25 minutes at 37°C with 1% chymotrypsin in PBS (Seromed). Endothelial cells were then removed by centrifugation (400 g for 10 minutes). The petri dish was resuspended in M-199 (Seromed) with 20% fetal calf serum, 1% L-glutamine, 1% nonessential amino acids (Seromed), 1% HEPES (GIBCO), 1% sodium pyruvate, 1% Schütz medium (Seromed), as well as with streptomycin and penicillin. Primary cultured cells were grown for 3 to 4 days and were subcultured. Subcultures 1 and 2 were used for the experiments.

ELISA for Expression of VCAM-1 and ICAM-1 on Endothelial Cells

Experiments were carried out on 96-microtiter plates as described previously. The wells were treated with FACS lysing solution (Becton Dickinson) and stained with fluorescein isothiocyanate (FITC) and/or PE. Within 6 hours after incubation, the samples were washed two times with PBS. The stained cells were analyzed on the log fluorescence scale of the flow cytometer.

Measurement of [Ca$^{2+}$] in Endothelial Cells

Endothelial cells were seeded on coverslips and incubated at 37°C for 1 to 2 days. Measurements of [Ca$^{2+}$], in single cells were carried out as described previously. The measurements were performed using a Spex DM 3000 CM spectrophotometer, which was connected to a Nikon epifluorescence microscope and a variable-aperture photometer for isolating individual cells on the microscope stage. Cultured endothelial cells were loaded with fura 2 and a 20-minute incubation in PBS containing 5 μM fura 2-AM (Molecular Probes) added from a 5 mM stock solution in DMSO. Fluorescence of calcium-bound and unbound fura 2 was determined by rapidly alternating (0.1 second) the exciting radiation between 340 and 380 nm and separating the resulting emission signals at 505 nm electromagnetically. The maximal fluorescence ratio (R_{max}) was determined by adding 40 μM CaCl₂ (Sigma) and an additional 100 μM EGTA at pH 7.8. The ratio of the two signals was used to calculate [Ca$^{2+}$]. All experiments were carried out at room temperature. For evaluation of the different phases of the signal, [Ca$^{2+}$], was measured at the peak or highest value of the initial rise. This determination was accepted as the "peak response." After the signal had reached a stable plateau phase, the level of the "sustained response" was determined.

Immunofluorescence Analysis (FACScan) of Leukocyte Integrins

Fluorescent antibody cell sorting (FACS) analysis was carried out as described previously. Whole blood was collected in EDTA Vacutainers and stained with monoclonal antibodies conjugated with fluorescein isothiocyanate (FITC) and/or PE. Within 6 hours after collection, the blood samples were treated with FACS lysing solution (Becton Dickinson) and stained with antibodies specific for leukocyte integrins. The samples were then washed two times with optimized PBS (Cellwash, Becton Dickinson) and stained with antibodies specific for leukocyte integrins.

Materials and Chemicals

For FACS analysis we employed the following antibodies and chemicals: CD4/CD8 (mice IgG1/IgG1), CD11a (mouse IgG2a), CD18 (mouse IgG1), IgG1/IgG1 Simultest Control, mouse IgG1 control, mouse IgG2a control, Cellwash, CalBio, FACS lysing solution. All products mentioned were purchased from Becton Dickinson, Immunocytometry Systems. The following antibodies were purchased from Streck Laboratories: CD11b (mouse IgG1), CD11c (mouse IgG1), CD14 (IgG2a), CD15 selected abbreviations and acronyms.
Hailer et al Preeclampsia and Leukocyte Adhesion

If -

FIG 1. Effect of serum from preeclamptic women (n=22), normotensive pregnant women (n=29), and nonpregnant control women (n=18) on ICAM-1 surface expression. Incubation of cultured endothelial cells with serum for 12 hours induced an increase in ICAM-1. Serum from preeclamptic women resulted in a significantly higher ICAM-1 expression than serum from the pregnant control group and the nonpregnant women (P<.05). When the incubation experiments were repeated after delivery, serum from preeclamptic women had no stimulating effect on ICAM-1 expression and was not different from the control groups. The serum from normotensive women led to a higher ICAM-1 expression after delivery (P<.05).

Fig 1

(IgM), CD49d (mouse IgG1), CD29 (mouse IgG2a), mouse IgG1 control, mouse IgG2a control. The monoclonal antibodies for ICAM-1 and VCAM-1 were purchased from Becton Dickinson. The fluorescent probe fura 2-AM was purchased from Serva. All other materials, if not stated otherwise, were purchased from Sigma Chemical Co.

Statistical Analysis

Statistical analysis was carried out using a commercially available program (SPSS, SPSS Inc). The results (mean±SD) represent duplicate measurements. Normal distribution of the data was first tested by the Kolmogorov-Smirnov test. Comparisons between groups have been made by ANOVA. Comparisons of the temporal changes within groups were made by pairwise t tests with Bonferroni corrections for multiple comparisons. Differences were considered to be significant at P<.05.

Results

The results are shown in Fig 1. The serum from preeclamptic women (n=22), normotensive pregnant women (n=29), and nonpregnant control women (n=18) led to a higher ICAM-1 expression after incubation for 12 hours. The serum from preeclamptic women led to a significantly higher ICAM-1 expression than serum from the pregnant control group and the nonpregnant women (P<.05). When the incubation experiments were repeated after delivery, serum from preeclamptic women had no stimulating effect on ICAM-1 expression and was not different from the control groups. The serum from normotensive women led to a higher ICAM-1 expression after delivery (P<.05).

Fig 2. Effects of serum from preeclamptic women (n=22), normotensive pregnant women (n=29), and nonpregnant control subjects (n=18) on ICAM-1 expression. Incubation of cultured endothelial cells with serum for 12 hours induced an increase in ICAM-1. Serum from preeclamptic women resulted in a significantly higher ICAM-1 expression than serum from the pregnant control group and the nonpregnant women (P<.05). When the incubation experiments were repeated after delivery, serum from preeclamptic women had no stimulating effect on ICAM-1 expression and was not different from the control groups. The serum from normotensive women led to a higher ICAM-1 expression after delivery (P<.05).

We then analyzed the effects of serum from preeclamptic women on endothelial cell [Ca^{2+}], (Fig 2). Addition of serum led to a rapid increase in [Ca^{2+}], followed by a slower return to a sustained plateau slightly above basal levels. Serum from preeclamptic patients induced a significantly higher increase in peak [Ca^{2+}], than serum from normal pregnancy and nonpregnant control subjects. The sustained phase was not different between the three groups. The effect of serum from preeclamptic women was no longer present after delivery. We observed a positive correlation between ICAM-1 expression and [Ca^{2+}] in preeclamptic women (r=0.80, P<0.001). These data are shown in Fig 3. The correlation disappeared after delivery (r=0.52, P=NS, data not shown).

We also analyzed the expression of the integrin counterreceptors on lymphocytes, monocytes, and granulocytes, as shown in the Table and Fig 4. We observed no differences in integrin expression between preeclamptic and normal pregnant women. However, the integrin expression was higher during pregnancy in general. Both pregnant groups showed a significantly higher expression of α integrin CD 11b and β2 integrin CD 29 than nonpregnant women. The same difference was observed for the α integrins CD 11a, CD 11b, and CD 11c, while no difference was observed for CD 49. The increased integrin expression was observed on monocytes, but not on lymphocytes. Granulocytes showed a variable pattern with an increase of CD 18, CD 11b, and CD 11c and no difference for CD 29 and CD 11a. After delivery, the integrin expression was decreased and no longer different from nonpregnant women. The results for the ICAM-1 counterreceptor integrins LFA-1, Mac-1, and p150,95 before and after delivery are shown in Fig 3. LFA-1 expression was decreased and no longer different from nonpregnant women. The results for the ICAM-1 counterreceptor integrins LFA-1, Mac-1, and p150,95 before and after delivery are shown in Fig 3. LFA-1 expression was decreased and no longer different from nonpregnant women.

Fig 3. Correlation between ICAM-1 expression and [Ca^{2+}] in preeclamptic women (r=0.79, n=10, P<0.01).
Integrin Expression in Preeclamptic Women (n=22), Normotensive Pregnant Women (n=29), and Nonpregnant Control Subjects (n=18) (mean±SD)

<table>
<thead>
<tr>
<th>Group</th>
<th>Time</th>
<th>CD11a</th>
<th>CD11b</th>
<th>CD11c</th>
<th>CD18</th>
<th>CD29</th>
<th>CD49d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocytes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preeclamptic</td>
<td>prepartum</td>
<td>92±3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>postpartum</td>
<td>86±5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normotensive</td>
<td>prepartum</td>
<td>97±6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>postpartum</td>
<td>89±7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy</td>
<td>postpartum</td>
<td>89±4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>89±4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocytes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preeclamptic</td>
<td>prepartum</td>
<td></td>
<td>144±6</td>
<td>457±38*</td>
<td>1062±95*</td>
<td>334±26*</td>
<td>147±6*</td>
</tr>
<tr>
<td></td>
<td>postpartum</td>
<td></td>
<td>137±6</td>
<td>395±26*</td>
<td>741±64</td>
<td>290±16</td>
<td>156±5*</td>
</tr>
<tr>
<td>Normotensive</td>
<td>prepartum</td>
<td></td>
<td>156±7†</td>
<td>460±34†</td>
<td>954±57†</td>
<td>353±26†</td>
<td>143±4†</td>
</tr>
<tr>
<td></td>
<td>postpartum</td>
<td></td>
<td>143±10</td>
<td>394±42†</td>
<td>890±74†</td>
<td>314±22†</td>
<td>139±5†</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td>131±6</td>
<td>206±13</td>
<td>506±45</td>
<td>244±11</td>
<td>123±2</td>
</tr>
<tr>
<td>Granulocytes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preeclamptic</td>
<td>prepartum</td>
<td></td>
<td>36±1†</td>
<td>339±27†</td>
<td>356±32†</td>
<td>148±16</td>
<td>41±3</td>
</tr>
<tr>
<td></td>
<td>postpartum</td>
<td></td>
<td>39±2</td>
<td>346±27†</td>
<td>289±22†</td>
<td>156±11</td>
<td>39±2</td>
</tr>
<tr>
<td>Normotensive</td>
<td>prepartum</td>
<td></td>
<td>39±1†</td>
<td>372±31†</td>
<td>325±20†</td>
<td>169±13†</td>
<td>36±1†</td>
</tr>
<tr>
<td></td>
<td>postpartum</td>
<td></td>
<td>30±2</td>
<td>410±41†</td>
<td>410±38†</td>
<td>182±16†</td>
<td>96±1†</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td>44±2</td>
<td>206±11</td>
<td>203±29</td>
<td>129±8</td>
<td>40±1</td>
</tr>
</tbody>
</table>

S Significant difference pre/postpartum
†S* Significant difference preeclampsia/normotensive pregnancy
‡Significant difference from control

not different between the two groups of pregnant women, but decreased significantly after delivery in both

Discussion

We found that serum from preeclamptic women led to increased ICAM-1 expression on endothelial cells compared with serum from normal pregnant and nonpregnant women, while VCAM-1 was not influenced. Serum from women with normal pregnancy, on the other hand, showed a lower expression of ICAM-1 than did nonpregnant control subjects. Investigation of possible intracellular mediators revealed a greater response in [Ca²⁺], on exposure to preeclamptic women's serum compared with control subjects. The integrin analysis on circulating leukocytes

Fig 4 Expression of LFA-1 (CD11a/CD18), MAC-1 (CD11b/CD18), and p150,95 (CD11 c/CD18) on monocytes of preeclamptic women (n=22) and normotensive pregnant women before and after delivery. CD18, CD 11a, CD 11b, and CD 11c were increased during pregnancy and decreased significantly after delivery. However, integrin expression was not different between the two groups of pregnant women.
showed no significant differences between preeclampsia and normal pregnancy, but instead revealed an increased integrin expression during pregnancy in general. Our findings further support the hypothesis that endothelial cells are activated in preeclampsia.11

Other endothelial functions which have been activated in vitro experiments involving serum from preeclamptic women are increased NO synthase and NO release,35,36 increased release of endothelin,35 and decreased release of prostacyclin.34 Furthermore, fibronectin, an important mediator of platelet aggregation, tissue factor, the most potent endogenous procoagulant activity, and von Willebrand factor, a major component of coagulation factor VIII complex, are all released from endothelial cells in vitro on stimulation with serum from preeclamptic women.37,39,32

In addition, prepartum serum from such patients has mitogenic activities,14,16 possibly due to the release of the platelet-derived growth factor PDGF.28 The stimulating effect of the serum disappears rapidly after delivery, suggesting the presence of one or more circulating endothelial activating factors in the serum of preeclamptic women. The nature of this factor(s) has not been elucidated. It has been suggested that hyperlipidemia and lipid peroxidation might contribute to this endothelium damaging effect in preeclampsia.35,36 We recently demonstrated that LDL and oxidized LDL can induce expression of endothelial adhesion molecules in vitro.32 This effect was associated with an LDL-induced increase in [Ca2+]. However, in these experiments we observed a stimulating effect on both ICAM-1 and VCAM, rather than on ICAM-1 alone.

Our results suggest that the stimulating effect of serum from preeclamptic women on ICAM-1 may be mediated by an increase in [Ca2+]. We and others showed earlier that [Ca2+] was also elevated in platelets from patients with preeclampsia.30 As in the present study, the increased [Ca2+] disappeared rapidly after delivery. A higher concentration of [Ca2+] in endothelial cells of preeclamptic women could also be involved in the upregulation of NO synthase. We are presently investigating the hypothesis that other [Ca2+]-dependent intracellular messengers, such as protein kinase C are involved.

The damage to endothelial cells in preeclampsia has not only been observed in vitro, but also increased circulating levels of fibronectin and von Willebrand factor have been observed in vivo. The increase in von Willebrand factor disturbed could lead to an increase in platelet activation and alterations in the leukocyte-platelet interaction.37,38 Circulating adhesion molecules have also been investigated in preeclampsia. In contrast to our results, elevated circulating levels of VCAM-1 but not ICAM-1 were described.19,29 It is possible that VCAM-1 is more readily cleaved from the endothelial surface and thus appears in the circulation more readily than ICAM-1.

Serum from pregnant women without preeclampsia induced a lower ICAM-1 expression than both preeclamptic women and nonpregnant women. This observation suggests that in normal pregnancy, the expression of endothelial adhesion molecules is downregulated to prevent leukocyte adhesion. Since leukocyte integrins seem to be upregulated during pregnancy, a down regulation of endothelial adhesion molecules would protect from increased cell adhesion. Such a protective mechanism for cell adhesion is analogous to the increased vasorelaxant properties of the endothelium during pregnancy.1 The increased leukocyte integrin expression we observed in the third trimester of pregnancy is in agreement with earlier observations reported by Thalagathan et al.46 Crouch et al.41 on the other hand, did not observe a significant change in CD 18 and CD 11b expression during pregnancy. We did not find an effect of preeclampsia on integrin expression. Thus, increased adhesiveness of leukocytes in preeclampsia is likely due to changes on the endothelium rather than because of alterations on the leukocyte surface. Our findings appear to be the first to suggest the presence of an increased endothelial cell adhesion molecule expression in preeclampsia, suggesting that leukocyte adhesion is increased in this disease. Such increased adhesion could contribute to the enhanced coagulation and diminished fibrinolysis described by others.1,8

In summary, we observed that serum from preeclamptic women led to an increased expression of ICAM-1 on endothelial cells compared with control subjects, while VCAM-1 was not influenced. Serum from normal pregnant women, on the other hand, showed a lower expression of ICAM-1 than serum from nonpregnant control women. Investigation of possible intracellular mediators suggested a role for [Ca2+]. An analysis of integrin counterreceptors for ICAM-1 on circulating leukocytes showed no significant differences between preeclampsia and normal pregnancy, but instead revealed an increased integrin expression during pregnancy in general. The effect of serum from preeclamptic women on cultured endothelial cells and the rapid decrease of this effect after delivery suggests the presence of a circulating endothelial cell-stimulating factor which enhances adhesion molecule expression and which may play a role in the pathogenesis of preeclampsia.

Acknowledgment

This work was supported by a grant-in-aid from the Deutsche Forschungsgemeinschaft to Dr Haller (Ha 1388/7/1)

References

12. Mastroianni DS, Kalter CS, O'Brien WF, Carlan SJ, Reece EA. Effect of magnesium sulfate on plasma endothelin-1 levels in normal

13 Taylor RN, Varma M, Teng NN, Roberts JM Women with preeclampsia have higher plasma endothelin levels than women with normal pregnancies *J Clin Endocrinol Metab* 1990,71:1675-1677

15 Taylor RN, Crombleholme WR, Friedman SA, Jones LA, Casal DC, Roberts JM High plasma cellular fibronectin levels correlate with biochemical and clinical features of preeclampsia but cannot be attributed to hypertension alone *Am J Obstet Gynecol* 1991;165 895-901

18 Chen CK, Lee CN, Shyn MK, Hsu H, Chen CT, Shen BC, Hsuh FJ Fibronectin levels in normal pregnancy and preeclampsia *J Forms Med Assoc* 1994,93 921-924

21 Stubbs TM, Lazarchik J, Horger EO Plasma fibronectin levels in preeclampsia a possible biochemical marker for vascular endothelial damage *Am J Obstet Gynecol* 1984,150 885-887

22 Robson JS Proteasome and the renal lesion in preeclampsia and abruptio placentae *Perspect Nephrol Hypertens* 1976,5,61-73

24 Baker PN, Davidge ST, Barankiewicz J, Roberts JM Plasma of preeclamptic women stimulates and then inhibits endothelial prostacyclin *Hypertension* 1986,7 56-61

25 Baker PN, Davidge ST, Roberts JM Plasma from women with preeclampsia increases endothelial cell nitric oxide production *Hypertension* 1995,26 244-248

26 Davidge ST, Baker PN, Roberts JM NOS expression is increased in endothelial cells exposed to plasma from women with preeclampsia *Am J Physiol* 1995,269 H1106-H1112.

30 Haller H, Oneyet T, Hauck U, Distler A, Philipp T Increased intracellular free calcium and sensitivity to angiotensin II in platelets of preeclamptic women *Am J Hypertens* 1989;2 238-243

34 Lorentzen B, Endresen MJ, Hovig T, Haug E, Henriksen T Sera from preeclamptic women increase the content of triglycerides and reduce the release of prostacyclin in cultured endothelial cells *Thromb Res* 1991,63 363-372

35 Saleh AA, Bottoms SF, Farag AM, Dombrowski MP, Welch RA, Norman G, Mammen EF Markers for endothelial injury, clotting and platelet activation in preeclampsia *Arch Gynecol Obstet* 1992,251 105-110

36 Musci TJ, Roberts JM, Rodgers GM, Taylor RN Mitogenic activity is increased in the sera of preeclamptic women before delivery *Am J Obstet Gynecol* 1988,159 1446-1451

40 Greer IA, Lyall F, Perera T, Boswell F, Macara LM Increased concentrations of cytokines interleukin-6 and interleukin-1 receptor antagonist in plasma of women with preeclampsia: a mechanism for endothelial dysfunction? *Obstet Gynecol* 1994,84 937-940

Endothelial Adhesion Molecules and Leukocyte Integrins in Preeclamptic Patients
Hermann Haller, Eva-Maria Ziegler, Volker Homuth, Marek Drab, Jens Eichhorn, Zsuzsanna Nagy, Andreas Busjahn, Klaus Vetter and Friedrich C. Luft

Hypertension. 1997;29:291-296
doi: 10.1161/01.HYP.29.1.291

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1997 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/29/1/291

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.jlw.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/