Opposite Regulation of Gax Homeobox Expression by Angiotensin II and C-Type Natriuretic Peptide

Jun Yamashita, Hiroshi Itoh, Yoshuhiro Ogawa, Naohsa Tamura, Kazuhiko Takaya, Toshio Igaki,
Kentaro Dot, Tae-Hwa Chun, Mayumi Inoue, Ken Masatsugu, Kazuwa Nakao

Abstract Growth arrest–specific homeobox (Gax) gene was isolated from rat aorta cDNA library and its expression was largely confined to the cardiovascular tissues. Gax gene was rapidly downregulated by platelet-derived growth factor in vascular smooth muscle cells (VSMCs) and overexpressed Gax was reported to reduce the neointimal thickening after balloon injury in vivo. We have demonstrated that angiotensin II (Ang II) stimulates vascular growth. In contrast, we also reported that C-type natriuretic peptide (CNP) is secreted from vascular endothelial cells to act as a novel endothelium-derived relaxing peptide and inhibits vascular growth via cGMP cascade. In the present study, we examined the effects of Ang II and CNP on Gax gene expression in VSMCs. In quiescent rat aortic VSMCs, Gax mRNA (2.3 kb) level became negligible 6 hours after the addition of Ang II (10^{-6} mol/L). The inhibitory action of Ang II on Gax mRNA expression (ED_{50} 10^{-11} mol/L) was almost completely blocked by an AT_{1}R antagonist, CV11974. In contrast, CNP 10^{-6} mol/L augmented Gax mRNA expression to exhibit 1.8-fold increase of the control 12 hours after the stimulation. This effect of CNP was mimicked by the addition of 8-bromoadenosine 3'5'-cyclic monophosphate. The addition of C-ANF[4-23], an atrial natriuretic peptide-C receptor–specific agonist and devoid of stimulating cGMP production, exhibited no effect on Gax mRNA expression. These results suggest that Gax is a common transcription factor involved in the signaling pathway of vascular growth for Ang II and CNP and regulates the cell cycle and/or phenotype of VSMCs for vascular remodeling in hypertension and atherosclerosis (Hypertension. 1997;29[part 2]:381-387.)

Key Words • natriuretic peptides • angiotensin II • growth arrest–specific homeobox • homeobox • growth • gene regulation • vascular smooth muscle cells

Migration and proliferation of VSMCs in neointima are key events for the development of hypertensive vascular complication, atherosclerosis, and coronary restenosis. In contrast to VSMCs with the contractile phenotype present in the intima media of the vascular wall, in the proliferative neointimal lesion, VSMCs exhibit the synthetic or embryonic phenotype which is characterized by enhanced proliferative and synthetic activities, reorganization of the cytoskeleton, and suppressed contractile activity. Such alternation of phenotypic and proliferative features of VSMCs is thought to be modulated by various growth factors and cytokines through the convergence of their signaling pathways into the network of transcription factors which govern the gene expressions and phenotypic diversity of the cells. However, until now the interaction between growth signals and transcription factors concerning the proliferation and differentiation of VSMCs has not been well understood.

Gax gene was isolated from the adult rat aorta cDNA library and its expression is largely confined to the cardiovascular tissues such as the aorta, heart, kidney and lung. Gax gene was rapidly downregulated during G0/G1 transition caused by PDGF or serum in cultured VSMCs and also downregulated in the rat carotid artery after balloon injury. Recently, microinjected recombinant Gax peptide was reported to inhibit mitogen-induced entry into the S phase in VSMCs and also demonstrated that overexpressed Gax reduced neointimal thickening after balloon injury. These findings all together suggest that Gax possesses the critical role in the growth inhibition of VSMCs.

We have been investigating the growth control of VSMCs by several vasoactive substances. We and others have demonstrated that Ang II stimulates the growth of VSMCs via the activation of PDGF, transforming growth factor-β, and basic fibroblast growth factor. On the other hand, we and others reported that natriuretic peptides inhibit the VSMC proliferation via guanosine 3'5'-cyclic monophosphate (cGMP) cascade triggered by the activation of the particulate guanylate cyclase which is the natriuretic peptide receptor itself. We also demonstrated that CNP, the third member of the natriuretic peptide family, is secreted from vascular endothelial cells and possesses vascular growth inhibitory action via CNP-specific receptor, ANP-B receptor, highly expressed on VSMCs with the synthetic phenotype. We, thus, indicated that CNP is a novel endothelium-derived relaxing peptide involved in vascular remodeling in hypertension and other cardiovascular diseases, and proposed the existence of the vascular NPS similar to the vascular RAS. Previously, we have demonstrated that the antagonistic relationship between the NPS and RAS in blood pressure control and blood fluid homeostasis, both as an endocrine system and as a neuropeptide system. We also reported that the vascular NPS is activated.

From the Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Japan.

Correspondence to Hiroshi Itoh, MD, PhD, Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharam-cho, Sakyo-ku, Kyoto 606, Japan. E-mail huto@kuhp.kyoto-u.ac.jp

© 1997 American Heart Association, Inc.
in proliferative vascular lesions, suppressing further proliferation of VSMCs by antagonizing the action of the vascular RAS.

In the present study, to elucidate the role of Gax on vascular growth control regulated by the antagonism between the RAS and NPS, we have examined the regulation of the Gax gene expression by Ang II and CNP in VSMCs.

Methods

Cell Culture

Cultured aortic VSMCs were derived from the explants of the thoracic aortae of male Wistar rats as previously reported and were grown in Dulbecco's modified Eagle's medium (DMEM, Biologics, Inc., Lenexa, Kan.), containing insulin (100 µg/mL), transferrin (5 µg/mL), and ascorbate (0.2 mmol/L). Then, the medium was replaced with fresh DMEM medium containing insulin (5 x 10^{-7} mol/L), transferrin (5 µg/mL), and ascorbate (0.2 mmol/L). Then, the medium was replaced with fresh DMEM medium and Ang II was added. Cells were incubated for the various times and harvested for RNA isolation. DMEM with 0.5% FCS, 5% SCS, 5% Denhardt's reagent, 50 mmol/L sodium phosphate buffer (pH 6.8), 0.1% SDS and 100 mg/mL heat-denatured salmon testis DNA, and washed at 55°C in 0.1X SSC and 0.1% SDS. Imaging and estimation of Gax mRNA expression were performed using image analyzer BAS 2000 (Fuji Photo Film Co., Ltd, Tokyo, Japan).

As a control, glyceraldehyde-3-phosphate dehydrogenase mRNA level was determined as previously reported.

Statistical Analysis

All results were expressed as mean±SD with n=3 to 6. Statistical analysis of the data was performed using ANOVA, P<.05 was considered significant. The experiments presented are the representatives of at least two separate experiments.

Reagents

Human Ang II and human CNP were purchased from Peptide Institute Inc. 8-Bromo-cGMP was purchased from Sigma Chemical Co. (St. Louis, Mo.). CV11974, an active metabolite of TCV-116, (1Z)-1-(cyclohexyloxycarbonyl)ethyl 2-ethoxy-1-[2'-(1H-tetrazol-5-yl) biphenyl-4-yl] methyl]-1H-benzoimidazol-7-carboxylate, which is an AT1 selective non-peptide antagonist, was obtained from Takeda Chemical Industries, Ltd. (Osaka, Japan). des-Gln^{11},Sar^{10},Gly^{9},Leu^{8},Gly^{7},Val^{6},Thr^{5},Val^{4},Thr^{3},Thr^{2},Val^{1}, C-(Lys^{14}/Cys^{14})) was purchased from Peninsula Laboratories Inc. Other reagents were purchased from standard commercial suppliers.

Results

Regulation of Gax mRNA Expression by Ang II

The expression of Gax mRNA was analyzed in rat VSMCs by Northern blot analysis. Gax mRNA of approximately 2.3 kilobases was detected as a single band in quiescent VSMCs using the PCR-synthesized probe (see "Methods"), being consistent with the reported size of Gax mRNA, 2244 bases (data not shown).

dDNA probe was obtained by dDNA synthesis and the polymerase chain reaction method using the total RNA of mesangial cells derived from Wistar-Kyoto Rats with the sense, 5'-AGATGTTCTCCCGGCAAGG-3', and antisense, 5'-TCTCGGGATCTGAACTGTC-3', primers, corresponding to nucleotides 480-499 and 701-720 of rat Gax cDNA, respectively. The probe was labeled by random-primed synthesis to the specific activity of approximately 1 x 10^{9} cpm/µg. The filters were hybridized with the dDNA-labeled probe at 42°C in 50% formamide, 5% SCS, 5% Denhardt's reagent, 50 mmol/L sodium phosphate buffer (pH 6.8), 0.1% SDS and 100 mg/mL heat-denatured salmon testis DNA, and washed at 55°C in 0.1X SSC and 0.1% SDS. Imaging and estimation of Gax mRNA expression were performed using image analyzer BAS 2000 (Fuji Photo Film Co., Ltd, Tokyo, Japan). As a control, glyceraldehyde-3-phosphate dehydrogenase mRNA level was determined as previously reported.

Fig 1 shows the time course of the effect of Ang II 10^{-6} mol/L on Gax mRNA expression. Rapid and transient downregulation of Gax mRNA was observed after Ang II stimulation. The downregulation occurred within 1 hour after the stimulation and maximal at 6 hours when Gax mRNA became almost negligible. Gax mRNA level was revealed to recover towards the baseline from 12 hours to 24 hours. Fig 2 depicts the dose-dependent effect of Ang II on Gax mRNA expression. The left panel shows the
Yamasita et al: Gene Regulation by Ang II and CNP

Gax mRNA expression. Gax mRNA increased from 3 hours after the stimulation, reaching a maximal level at 12 hours and also showed the tendency to decrease 24 hours after the stimulation. The effects of CNP and 8-Br-cGMP on Gax mRNA augmentation were dose dependent (Fig 5). Twelve hours after the administration of CNP or 8-Br-cGMP, significant increase of Gax mRNA expression was observed by 10^{-6} mol/L of CNP and 10^{-5} to 10^{-4} mol/L of 8-Br-cGMP, respectively. The maximal augmentation of Gax mRNA expression compared with the vehicle administration was 1.8-fold and 2.5-fold increases by 10^{-6} mol/L of CNP and 10^{-5} mol/L of 8-Br-cGMP (n=6), respectively.

Next, we examined the effect of ANP-C receptor-specific agonist, C-ANF [4-23]. ANP-C receptor is not coupled to guanylate cyclase and is proposed to have a major role in the clearance of natriuretic peptide. As shown in Fig 6, 10^{-7} mol/L of C-ANF [4-23] exerted no significant effect on Gax mRNA expression 12 hours after the stimulation.

Interaction of Ang II and CNP on Gax mRNA Expression

To confirm the opposite action of Ang II and CNP on Gax mRNA expression, we examined the effect of the simultaneous administration of Ang II and CNP. As shown in Fig 7, 10^{-6} mol/L of CNP attenuated the inhibitory action of Ang II 10^{-12} to 10^{-8} mol/L on Gax mRNA expression 6 hours after the stimulation. The suppression of Gax mRNA expression caused by 10^{-10} mol/L of Ang II was reversed approximately 60% by the administration of CNP 10^{-6} mol/L.

Discussion

The present study demonstrates that Ang II, which possesses the promoting action on proliferation and hypertrophy of VSMCs, potently induced rapid and transient downregulation of Gax mRNA expression. The temporal profile of the downregulation of Gax mRNA expression caused by Ang II was similar to that induced by PDGF and serum. The present study also showed that AT_{1}-R antagonist CV11974 almost completely blocked the inhibitory action of Ang II on Gax mRNA expression, suggesting that the effect of Ang II on Gax gene expression is mediated via AT_{1}-R. Ang II exhibits proliferative and hypertrophic effects on VSMCs via G-protein-coupled AT_{1}-R with multiple signal transduction pathways, including the activation of phospholipase C, calcium mobilization, the activation of protein ki-
nase C, the induction of proto-oncogenes, protein tyrosine kinase phosphorylation, and the activation of MAPK, and the stimulation of Janus kinase/STAT (signal transducers and activators of transcription) pathway. On the other hand, PDGF exerts the proliferative action mainly via the activation of the receptor intrinsic protein tyrosine kinase, and other pathways similar to AT1-R. Recent study revealed that AT1-R signal transduction pathway converges into the PDGF/ receptor signaling cascades and results in the activation of proteins upstream of p21, which initiates the phosphorylation cascades towards the MAPK activation. Similar action on Gax mRNA expression of Ang II and PDGF suggests that the gene regulation of Gax expression is under control of the molecules existed in the downstream after the convergence of Ang II and PDGF receptor signaling pathways, such as MAPK.

Ang II exerted quite potent effect on Gax mRNA suppression. Ang II 10^{-11} mol/L and Ang II 10^{-10} mol/L caused 50% and 98% reduction of Gax mRNA expression 3 hours after the stimulation, respectively. Previously, we have demonstrated that Ang II induced the growth of VSMCs, but significant growth stimulation was observed by more than 10^{-8} mol/L of Ang II. The reason for the difference of sensitivity to Ang II between Gax expression and DNA synthesis is not known at present. The present and previous studies demonstrated that the suppression of Gax mRNA expression is immediately early event in the cell cycle progression, that is, that occurred at least from 3 hours to 12 hours after the mitogen stimulation, corresponding to the period from G0/G1 transition to G1/S boundary. To achieve further progression of the cell cycle and initiation of DNA synthesis, the participation of other factors should be necessary in addition to the suppression of Gax mRNA expression mechanism. It can be, however, at least said that the suppression of Gax mRNA expression is a highly sensitive marker of growth stimulation of VSMCs.

In contrast to the effect of Ang II, CNP and 8-Br-cGMP upregulated Gax mRNA expression. It has been reported
that Gax mRNA expression was dependent on the cell quiescence, that is, Gax was expressed at low levels in subconfluent, but its mRNA level increased within 8 hours after the cells are placed in serum-poor medium. We demonstrated herein that CNP upregulated Gax mRNA expression in a similar time course with the serum starvation in a dose-dependent manner. The administration of 8-Br-cGMP mimicked the effect of CNP, and C-ANF [4-23], the specific agonist for ANP-C receptor which is not coupled with guanylate cyclase and exhibits no cGMP genesis by natriuretic peptides in VSMCs, exerted no significant effect on Gax mRNA expression. All these results suggest that CNP up-regulates Gax mRNA expression via the activation of cGMP cascade. This is, to our knowledge, the first report that growth inhibitory signals up-regulate the Gax mRNA expression. As we have previously demonstrated, CNP possesses the growth inhibitory effect on VSMCs via cGMP cascade. cGMP has been reported to suppress the proliferation of VSMCs by inhibiting the progression from the G1 into S phase of the cell cycle. Indeed, recently we demonstrated that overexpression of CNP in VSMCs by adenovirus system caused the G1/S boundary.

We have proposed the counterregulatory effects of NPS on RAS not only in blood pressure and body fluid homeostasis through vasorelaxation, diuresis and natriuresis, and inhibition of aldosterone secretion, but also in vascular growth control.22 The present study revealed that CNP also exerted the antagonistic effect on Ang II-induced suppression of Gax mRNA expression, suggesting that the antagonistic effect between Ang II and CNP on vascular growth is controlled via the regulation of Gax gene expression. Now we examine the involvement of Gax in the growth control of VSMCs by Ang II and CNP using the antisense oligonucleotide method for Gax gene, as we previously reported.15 Taking these results together, it is indicated that Gax can be involved in the signaling pathway of vascular growth control by Ang II and CNP as a common transcription factor and may act as an intracellular switch for controlling on and off of cell proliferation.

Recently, Walsh et al reported that transfer of Gax gene into VSMCs after balloon injury has been shown to inhibit cell proliferation and neointima formation in vivo.14 For gene therapy against vascular proliferative diseases such as restenosis, Gax gene therapy against vascular proliferative diseases such as restenosis may provide a potential strategy.

22 The present study revealed that CNP also exerted the antagonistic effect on Ang II-induced suppression of Gax mRNA expression, suggesting that the antagonistic effect between Ang II and CNP on vascular growth is controlled via the regulation of Gax gene expression. Now we examine the involvement of Gax in the growth control of VSMCs by Ang II and CNP using the antisense oligonucleotide method for Gax gene, as we previously reported.15 Taking these results together, it is indicated that Gax can be involved in the signaling pathway of vascular growth control by Ang II and CNP as a common transcription factor and may act as an intracellular switch for controlling on and off of cell proliferation.

Fig 7. Interaction of Ang II and CNP on Gax mRNA expression. Quiescent VSMCs were simultaneously treated with various doses of Ang II (10⁻⁷ to 10⁻⁸ mol/L) and/or CNP (10⁻⁴ mol/L) for 6 hours and their effects on Gax mRNA expression were evaluated by Northern blotting. a. Representative results of Northern blot analyses. The four lanes on the left show the effect of vehicle or Ang II (10⁻⁷ to 10⁻⁸ mol/L) without CNP administration, whereas the four lanes on the right show the effect of simultaneous administration of CNP (10⁻⁴ mol/L) and either vehicle or Ang II. b. Quantitative measurements of Gax mRNA levels after administration of CNP (10⁻⁴ mol/L) and either vehicle or Ang II. Bars represents the mean±SD (n=5 or 6). *P<.05 vs corresponding control values. M indicates mol/L.
as hypertensive vascular complication, atherosclerosis and coronary restenosis. Common intracellular molecules which affect the cell cycle progression such as retinoblas-
toma gene, p53 and p21^{CIP1} are recommended as good tar-
ges.

The present study revealed that Gax can be a common regulator of VSMC growth control by many vas-
cular growth promoting and inhibiting substances includ-
ing Ang II and CNP, and may be involved in VSMC dif-
ferentiation. Gax is, therefore, a suitable candidate for
gene therapeutic target for vascular diseases.

In conclusion, we demonstrated that Ang II and CNP
oppositely regulate Gax gene expression in VSMCs. The
findings suggest that Gax is a common transcription factor
involved in the signaling pathway of vascular growth for
Ang II and CNP, and regulates the cell cycle and/or pheno-
type of VSMCs for vascular remodeling in hypertension
and atherosclerosis.

Acknowledgments

This work was supported in part by research grants from the
Japanese Ministry of Education, Science, and Culture, the Japa-
nese Ministry of Health and Welfare Disorders of Adrenal Hori-
mone research committee, the Molecular Approach for the Patho-
genesis of Immunological Disorder research committee, the
Smoking Research Foundation, the Yamanouchi Foundation for
Research on Metabolic Disorders, the Salt Science Research
Foundation, the Uehara Memorial Foundation, and the Japanese
Society for Cardiovascular Diseases. We thank Hayato Kato and
Yuko Morii for their excellent secretarial work.

References

2 Chanley-Campbell J, Campbell GR, Ross R The smooth muscle cell in culture Physiol Rev 1979,59 1-61
3 Schwartz SM, Campbell GR, Campbell JH Replication of smooth muscle cells in vascular disease Circ Res 1986,58 427-444
5 Barja F, Coulon C, Belin D, Ghabban G Actin isoform synthetis and mRNA levels in quiescent and proliferating rat aortic smooth muscle cells in vivo and in vitro Lab Invest 1986,55 226-233
7 Ross R, Glomset JA Atherosclerosis and the arterial smooth muscle Science 1975,189 1332-1339
8 Musaro JM, Corran RS The pathogenesis of atherosclerosis athero-
genesis and inflammation Lab Invest 1988,58 249-261
9 Nisslion J Growth factors and the pathogenesis of atherosclerosis Atherosclerosis 1986,62 185-189
10 Ross R The pathogenesis of atherosclerosis a perspective for the 1990s Nature 1993,362 801-809
11 Gersch DH, LePiane DF, Patel CV, Copeland NG, Jenkins NA, Walsh K Molecular cloning of a diverged homoebox gene that is rapidly downregulated during the G_{dG} transition in vascular smooth muscle cells Mol Cell Biol 1993,13 3722-3733
14 Gibbons GH, Dzau VJ Molecular therapies for vascular diseases Science 1996,272 689-693
16 Itoh H, Pratt RE, Dzau VJ Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells J Clin Invest 1990,86 1690-1697
19 Suga S, Nakao K, Itoh H, Komatsu Y, Ogawa Y, Hama N, Imura H Endothelial production of C-type natriuretic peptide and its marked aug-
mentation by transforming growth factor-β possible existence of vascular natriuretic peptide system J Clin Invest 1992,90 1145-1149
21 Suga S, Nakao K, Itoh H, Itoh Y, Komatsu Y, Ogawa Y, Hama N, Imura H Selective natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide Endocrinol-
y 1992,130 220-230
27 Greendling KK, Rittenhouse SE, Brock TA, Ekstein LS, Gimbrone MA, Alexander RW Suspended diacylglycerol formation from mo-
28 Brock TA, Alexander RW, Ekstein LS, Asahjawi WJ, Chargard MA Angiotensin increases cytosolic free calcium in cultured vascular smooth muscle cells Hypertension 1985,7(suppl I) 105-110
30 Tansman MD, Brock BC, Izumo S, Tsuda T, Alexander RW, Nadal-
33 Duff JL, Berk BC, Corona MA, Angiotensin II stimulation, the pp60
and pp42 activation of protein kinase in cultured rat smooth muscle cells Biochem Biophys Res Commun 1992,188 257-264
34 Tsuda T, Kawahara Y, Ishida Y, Koide M, Shu K, Yokoyama M Angiotensin II stimulates two myelin basic protein/microtubule-a-
sociated protein 2 kinases in cultured vascular smooth muscle cells Circ Res 1990,71 620-630
35 Darrell JE, Kerr IM, Stark GR Jak-STAT pathways and transcri-
ptional activation in response to IFNs and other extracellular signaling proteins Science 1994,264 1415-1421
36 Marrazo MR, Schieffer B, Patte WS, Heerle L, Berk BC, Delatol-
aine P, Bernstein KE Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor Nature 1995,375 747-750
37 Inui H, Kitami Y, Tam M, Kondo T, Inagami T Differences in signal transduction between platelet-derived growth factor (PDGF) α and β receptors in vascular smooth muscle cells J Biol Chem 1994,269 30546-30552

Opposite Regulation of Gax Homeobox Expression by Angiotensin II and C-Type Natriuretic Peptide

Hypertension. 1997;29:381-385
doi: 10.1161/01.HYP.29.1.381

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1997 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/29/1/381

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/