Angiotensin I, II, and III Tachyphylaxis in the Mesenteric Vascular Circuit of the Rat

JUAN CARLOS FASCIOLÓ, M.D., AND ALBERTO BINIA, M.D.

SUMMARY Angiotensin tachyphylaxis is rapidly induced in the mesenteric vascular circuit of the rat perfused with a saline solution. There is crossed tachyphylaxis among angiotensins (AI, AII, and AIII). The angiotensin antagonist Sar 1-Ileu 8-AII is ineffective when the vascular preparation is previously rendered tachyphylactic to AII, showing that the AII receptors are not available during tachyphylaxis. This finding supports the theory that angiotensin tachyphylaxis is caused by receptor occupancy by the agonist. By perfusing the vascular preparation with AII solutions that were too diluted to produce vasoconstriction, tachyphylaxis to AII was induced. Therefore, AII receptors can be slowly saturated without producing vasoconstriction.

The recoveries of the vasoconstrictor effect of AII and AIII at 30 and 60 minutes after tachyphylaxis are similar; thus, the dissociation constants of the AII- and AIII-receptor complexes should be alike.

After three bolus injections of AI, the vascular preparation is completely refractory to AI, AII, and AIII. When the conversion of AI to AII is inhibited with captopril, AI no longer induces tachyphylaxis to AII and AIII. Thus, tachyphylaxis to AII and AIII induced by AI seems to be due not to the occupancy of AII receptors by AI but to the AII formation from AI "in situ." (Hypertension 3 (suppl II): H-166-H-170, 1981)

KEY WORDS • vascular smooth muscle • angiotensin receptors • captopril • angiotensin I converting enzyme • Sar 1-Ileu 8-AII

TACHYPHYLAXIS is the reduction or the complete lack of response of an effector after the first effective dose of an agonist. Tachyphylaxis is restricted to the agonist considered or to a closely related group of substances, while others retain their full effect.

Tachyphylaxis to the pressor effect of angiotensin was first described by Page and Helmer in 1940. Isolated preparations of vascular and nonvascular smooth muscle are easily rendered tachyphylactic to angiotensin, a fact that facilitates the study of its production and mechanism.

Two theories have been proposed to explain angiotensin tachyphylaxis. One, first advanced by Page and Bumpus in 1961, postulates that tachyphylaxis is due to the long-lasting occupancy of the angiotensin receptors by the agonist. This theory, with modifications, has been adopted by several investigators. The other theory explains tachyphylaxis as a consequence of the exhaustion of a hypothetical secondary messenger of angiotensin, catecholamines and prostaglandins have been proposed as the substances involved.

The isolated mesenteric vascular circuit of the rat perfused with a Ringer solution, according to the method of McGregor, develops rapid and complete tachyphylaxis to angiotensin; after a period of time, full recovery of the vasoconstrictor response is observed. This pattern is very reproducible, so the preparation is suitable for the study of angiotensin tachyphylaxis and its mechanism.

In a previous study, we were unable to support the theory of the exhaustion of a messenger. In this report we present evidence that supports the interpretation that angiotensin tachyphylaxis is caused by occupancy of the receptors.

Material and Methods

Perfusion

The vascular circuit of the superior mesenteric artery of the rat was prepared according to McGregor and perfused with a saline solution; it was used in all the experiments. The composition of the perfusing fluid was as follows (in mEq/liter): Na+ 134; K+ 5; Ca++ 2.2; Cl- 137; H2PO4- and HPO42- = 4; glucose 5.5 mM/liter. The osmolarity was 285 mOsm/liter and pH 7.45. A peristaltic pump of constant out-
put was used for perfusion. The output was set between 3–4 ml to maintain a basal perfusion pressure of 17–20 mm Hg. The perfusion pressure was recorded with a Statham pressure transducer (P-23AC) and a one-channel electronic recorder. After perfusion of the vessels began, 60 minutes were allowed for stabilization. The perfusing solution was previously gassed by bubbling pure oxygen for 15 minutes at 38°C. The temperature of the perfusing fluid was maintained at 38°C by immersing the plastic tube leading to the mesenteric artery in water from a circulating thermostatic bath.

Drugs

Angiotensin I (AI) (Schwarz); Angiotensin II amide (AII) (Ciba); Angiotensin III (AIII) (supplied by Dr. J.C. Romero), norepinephrine bitartrate (NA) (Sterling-Winthrop); Sar 1-Ileu 8-angiotensin II (Sar 1-Ileu 8-AII) (supplied by Dr. J.C. Romero); captopril (SQ 14, 225) (Squibb).

Substances were dissolved in the fluid used for perfusion and 50 µl was injected with a microsyringe proximal to the vessels. Injection time was about 1 second. AII in some experiments and captopril in all cases were added directly to the flask containing the perfusing fluid; All in some other experiments was infused at a constant rate with a Harvard pump.

Analysis of variance and test of multiple comparisons were used, according to Scheffe. 12

Results

Induction of Tachyphylaxis

The bolus injection of 50 µl (of a 20 µg/ml solution) of All gave rise to an increase of the perfusion pressure of 10–20 mm Hg which lasted from 2 to 3 minutes. An equal dose, injected immediately after the effect of the first one had disappeared, produced a much smaller effect, while a third dose was either totally ineffective or the vasoconstrictor effect was minimal (fig. 1, middle tracing). The vascular preparation is then completely refractory to angiotensin since 10 times more concentrated All solution (200 µg/ml) is also without effect (fig. 2 upper).

AI and AIII solutions (20 µg/ml) had vasoconstrictor effects similar in magnitude to All, also followed by rapid tachyphylaxis. There was crossed tachyphylaxis among the three angiotensins (fig. 1). Rapid tachyphylaxis could also be induced with more diluted angiotensin solutions. An All solution containing 2 µg/ml (1/20 of the concentration formerly used), induced complete tachyphylaxis after two or three bolus injections. The blockade was only partial, however, since the injection of a more concentrated All solution (200 µg/ml) was followed by a small vasoconstrictor effect (fig. 2 lower).

More diluted All solutions (0.2 µg/ml) were devoid of vasoconstrictor effect and did not induce tachyphylaxis, even after several bolus injections. Even more diluted solutions (1–5 m µg/ml), although de-
minutes after complete tachyphylaxis was induced by several bolus injections of a 20 µg/ml solution.

Thirty minutes after the last injection, All rats recovered 0.49 ± 0.098 and AIII 0.56 ± 0.036 of their initial effect, taken as one. The difference in recovery, 0.07 ± 0.11, is not significant. The recovery for All rats 60 minutes after tachyphylaxis was 0.86 ± 0.14 and, for AIII, 0.93 ± 0.21. The difference, 0.07 ± 0.24, is not significant. Sixty minutes after the All infusion the recovery, 0.83 ± 0.08, did not differ significantly with that of All and AIII rats at the 60-minute interval. The recovery of All after 2 hours was 1.42 ± 0.16, which indicates All potentiation with time. The vasoconstrictor effect of several vasoactive peptides, including the angiotensins, showed strong potentiation, as the time of perfusion of the mesenteric vessels was prolonged.

Mechanism of Angiotensin Tachyphylaxis

At present there is no direct evidence to support the theory that tachyphylaxis is due to the long lasting occupancy of the receptors by angiotensin. To investigate this possibility, the effect of a potent angiotensin antagonist, Sar 1-Ileu 8-AII, on the vascular preparation was studied. This substance showed very small agonist effect in these experiments and, by remaining attached to angiotensin receptors, prevented the vasoconstrictor effect of angiotensin. We reasoned that if angiotensin tachyphylaxis is caused by the occupancy of receptors by the agonist, the effect of Sar 1-Ileu 8-AII must be prevented if the receptors are already occupied.

FIGURE 2. All tachyphylaxis induced with injections of 50 µl of angiotensin solutions of different concentrations.

Upper Tracing: Complete tachyphylaxis after one bolus injection of the 20 µg/ml All solution (1 µg). A 10 times more concentrated All solution (200 µg/ml, 10 µg) was also ineffective. Lower Tracing: Three injections of an All solution with 0.2 µg/ml (0.01 µg) were without vasoconstrictor effect and did not induce tachyphylaxis to a 2 µg/ml All solution (0.1 µg). After two injections of the latter solution, the third one was without effect. The blockade, however, was not complete since the 200 µg/ml solution (10 µg) still produced a small effect.

FIGURE 3. Recovery of the vasoconstrictor effect of All and AIII after tachyphylaxis.

Complete tachyphylaxis was induced by three bolus injections of 50 µl of the 20 µg/ml All solution, except in the experiments of the graphic at lower left, in which tachyphylaxis was produced by infusing 0.5 ml of this angiotensin solution in 1 minute. The vasoconstrictor effect of the All solution was assayed 30, 60 and 120 minutes after tachyphylaxis. Recovery (R) is expressed as the ratio effect at t time/initial effect.
Two bolus injections of a 20 \(\mu \)g/ml solution of Sar 1-Ileu 8-AII completely blocked the effect of a subsequent injection of 20 \(\mu \)g/ml solution of All. The vasoconstrictor effect of All recovered slowly: 0.13 ± 0.03 of the previous pressor effect (considered as 1) at 1 hour after the injection of the antagonist, and 0.33 ± 0.04 after 2 hours (n = 8) (fig. 4, middle bars). The recovery of the effect after complete tachyphylaxis to All was more rapid; in this series of experiments 0.83 ± 0.06 of the pressor effect recovered 1 hour after and 1.09 ± 0.23 2 hours after complete tachyphylaxis (n = 8) (fig. 4, right bars).

In a third group of experiments, angiotensin tachyphylaxis was induced as described above and, immediately afterward, two injections of Sar 1-Ileu 8-AII (same doses as above) were given. The vasoconstrictor effect of All was assayed 60 and 120 minutes after the injection of the antagonist. The recovery of the All effect was 0.74 ± 0.08 after 1 hour and 0.94 ± 0.16 after 2 hours (n = 10). These recoveries do not differ significantly from those observed after total tachyphylaxis, but the difference with the recoveries of All effect after the antagonist is highly significant (fig. 4, the left bars compared with middle bars).

These results show that the blocking effect of Sar 1-Ileu 8-AII is prevented if the mesenteric vascular preparation is previously rendered tachyphylactic to All. This is probably because angiotensin receptors, being “protected” with All, are not available for the antagonist.

AI Conversion to All and Tachyphylaxis

If angiotensin tachyphylaxis results from the occupancy of the receptors, crossed tachyphylaxis among AI, All, and AIII would be an indication that the three angiotensins share the same receptors. But since AI, to be active on the vascular preparation, must be converted “in situ” to All, it is possible that tachyphylaxis to All produced by AI would be due not to the occupancy of All receptors by AI but to the formation of All from AI.

To investigate this point, the conversion of AI was inhibited by the converting enzyme inhibitor, captopril. Complete inhibition of the vascular effect of AI was usually achieved after 1 hour of infusion with 200 mg of captopril/liter of infusing fluid.

In five experiments, a bolus injection of AI (20 \(\mu \)g/ml solution) produced an increase of 14 ± 2.5 mm Hg in the perfusion pressure. Complete tachyphylaxis to AI and All followed after three such AI injections. One hour after the start of the captopril infusion, AI was devoid of any vasoconstrictor effect. After three injections of the AI solution and no vasoconstrictor effect, All was injected as usual; an average rise of the perfusion pressure of 9.7 ± 1.8 mm Hg was produced. Thus, when the converting enzyme was inhibited by captopril, AI was no longer able to induce tachyphylaxis to All (fig. 5).
Discussion

The hypothesis that angiotensin tachyphylaxis is due to the exhaustion of a secondary messenger has received support from some investigators, but not by others. We were also unable to find involvement of catecholamines, serotonin, or prostaglandins in angiotensin tachyphylaxis induced in the mesenteric preparation.

The theory of receptor occupancy has up to now received only indirect evidence. Palaic and Lemorvan, using tritiated All, tried to find out whether the receptor sites for All were reduced during tachyphylaxis. Curiously enough, they concluded that receptor sites increased during tachyphylaxis.

The results presented here, showing that angiotensin receptors are not available for the angiotensin antagonist Sar 1-Ileu 8-AII when the mesenteric preparation is made tachyphylatic to angiotensin, gives strong support to the theory of receptor occupancy. By perfusing the mesenteric preparation with diluted angiotensin solutions, we were able to induce tachyphylaxis without any vascular effect of the agonist. It is difficult to think of the exhaustion of any mediator when the agonist is totally ineffective.

In the receptor occupancy theory, the time of recovery from tachyphylaxis would depend upon the dissociation constant of the angiotensin-receptor complex. AI and All recovered, in 30 minutes, some 50% of their initial vasoconstrictor effect, an indication that 50% of the receptors are again available for All. The recoveries of the All and AIII effects 60 minutes after tachyphylaxis do not differ significantly. The dissociation constant of the receptor-angiotensin complex appears to be of similar magnitude for both angiotensins.

The experiments with captopril show that crossed tachyphylaxis between AI and All occurs only when AI can be converted to All. This means that AI is unable by itself to block AII receptors. One explanation would be that AI may have specific receptors and will not attach to AII receptors. Another possibility is that both angiotensins I and II attach to a common receptor, but the complex AI-common receptor dissociates rapidly, being then unable to induce tachyphylaxis to All.

Acknowledgments

We thank Dr. J. C. Romero for kindly supplying the All and Sar-1-Ileu 8-AII, and Squibb and Company for supplying the captopril

References

15. Paiva TB, Mendes GB, Paiva ACM. Specific desensitzation (tachyphylaxis) of the guinea pig ileum to angiotension II in perfused mesenteric blood vessels of the rat. J Physiol (London) 223: H 233, 1977
16. Roberts AM, Messina EJ, Kaley G. Role of prostaglandins in the mediation of systemic tachyphylaxis to angiotension II. Prostaglandins 14: 133, 1977
Angiotensin I, II, and II tachyphylaxis in the mesenteric vascular circuit of the rat.

J C Fasciolo and A Binia

Hypertension. 1981;3:II-166
doi: 10.1161/01.HYP.3.6_Pt.2.II-166

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1981 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/3/6_Pt_2/II-166

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/