Possible Mechanism of Prostaglandin-Induced Renal Vasconstriction in the Rat

NESTOR SCHOR, M.D., PH.D., AND BARRY M. BRENNER, M.D.

SUMMARY We studied the role of the renin-angiotensin system in the vasoconstrictor effect induced by prostaglandins (PG) on the renal microcirculation in 25 euvolemic Munich-Wistar rats. Infusions of subvasodepressor doses of PGE₂ and PGI₂ led to lower mean values for single nephron (SN) glomerular filtration rate (GFR), total kidney GFR, glomerular plasma flow rate, Qₐ, and ultrafiltration coefficient (Kₜ) than were found in animals given vehicle alone (control group). On the other hand, the mean values for glomerular transcapillary hydraulic pressure difference, ΔP, and total renal arteriolar resistance, Rₐ, tended to be higher in the experimental groups. The effects of PGI₂ on the renal microcirculation were more pronounced than for PGE₂. These increases in ΔP and Rₐ and decreases in Qₐ and Kₜ are typical of changes induced by angiotensin II (AII). To further explore this AII-like phenomenon, an infusion of saralasin, a competitive AII antagonist, was used. Indeed, when saralasin was infused together with either PGE₂ or PGI₂, the previously noted effects on ΔP, Qₐ, Rₐ, and Kₜ were largely abolished. Thus, saralasin transformed the renal action of PGE₂ and PGI₂ from vasoconstrictor (low Qₐ, high Rₐ) to vasodilator (high Qₐ and low Rₐ). Therefore, the effects of nonvasodepressor doses of PGE₂ and PGI₂ on the renal microcirculation appear to depend on an intermediate action of AII. (Hypertension 3 (suppl II): II-81-II-85, 1981)

KEY WORDS • PGE₂ • PGI₂ • renal microcirculation • glomerular hemodynamics • angiotensin II • saralasin

I

It has been suggested that in the rat, in contrast to other species, prostaglandin (PG) E₂ causes an increase in intrarenal resistance. Hockel and Cowley observed in dogs that chronic subdepressor PGE₂ infusions induces an increase in both mean arterial pressure (ΔP) and plasma renin activity. Since PGs are produced in the renal cortex, both in glomeruli and arterioles, and since they can stimulate renin release, it is possible that angiotensin II (AII) formation induced by PGs can alter the renal microcirculation.

We undertook the present study to evaluate the role of the activation of the renin-angiotensin system during subvasodepressor infusions of PGE₂ and PGI₂ (prostacyclin) by using an AII antagonist (saralasin) in euvolemic Munich-Wistar rats.

Methods

General

Micropuncture studies were performed in 25 adult male Munich-Wistar rats weighing between 215 to 320 g. Each rat was allowed free access to water and a standard rat pellet diet until the morning of study. Immediately after anesthesia was induced with inactin (100 mg/kg, i.p.), the left femoral artery was catheterized and approximately 70 nl of arterial blood was collected for baseline hematocrit determination. This arterial catheter was used for subsequent periodic blood sampling and estimation of mean arterial pressure (ΔP). ΔP was monitored with an electronic transducer (model P23Db, Statham Instruments Division, Gould Inc., Hato Rey, Puerto Rico) connected to a direct-writing recorder (Model 7712, Hewlett Packard, Waltham, Massachusetts). Polyethylene catheters were also inserted into right and left jugular veins for infusion of inulin, prostaglandin synthetase inhibitors (indomethacin or meclofenamate), saralasin, and ionicotonic rat serum. Intravenous infusion of 7.5% inulin solution in 0.9% NaCl was then started at a rate of 1.2 ml/hr. To suppress the possibility of endogenous prostaglandin release in response to the vasoactive effects of exogenous PG infusion, indomethacin or meclofenamate was added to the inulin

From the Nephrology Divisions, Escola Paulista of Medicina, São Paulo, Brazil, and Harvard Medical School, Boston, Massachusetts.

Supported by U.S. Public Health Service Grant AM-19467 and by Grants 78/0068 and 80/0970-4 from Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil.

Address for reprints: Nestor Schor, M.D., Ph.D., Renal Division, Escola Paulista de Medicina, Rua Botucatu, 720, São Paulo, Brazil 04023
solution to deliver 2.0 mg/kg/hr throughout the experiments in all groups. Vehicle solution (isotonic saline or tris buffer solution, pH 8.5, 300 mOsM/liter) was infused into seven rats (control group), whereas for the other groups, PGE2 (PGE2 group, n = 10, 125 ng/kg/min) or PGI2 (PGI2 group, n = 8, 62 ng/kg/min) were infused via a 27-gauge needle placed into the abdominal aorta just above the origin of the left renal artery.* Following tracheostomy, rats were prepared in routine fashion for micropuncture study, as described previously.* Throughout the period of surgical preparation and experimental study, all rats received a continuous infusion of isoncotic rat serum to maintain circulating plasma volume at conscious (or euvoletic) levels. Since plasma volume of rats prepared for micropuncture is reduced by approximately 20% relatively to the conscious animal, the following protocol for maintaining the euvoletic state was employed. Soon after collection of the baseline arterial blood sample, isoncotic rat serum was infused for 45 minutes at the rate of 7-10 ml/kg/hr, followed by reduction in infusion rate to 1.5 ml/kg/hr for the remainder of each experiment in order to maintain the hematocrit value at the baseline level measured immediately after induction of anesthesia. In a previous study, this protocol was found to be successful in maintaining plasma volume at the level that existed before anesthesia.

Pre-Saralasin Period

In all experiments, initial micropuncture measurements were performed as follows. Exactly timed (1-3 min) samples of fluid were collected from surface proximal tubule convolutions of at least three nephrons from the left kidney for determination of flow rate and inulin concentration and calculation of single nephron glomerular filtration rate (SNGFR). Coincident with these tubule fluid collections, two or three samples of femoral arterial blood were collected in each period for determination of systemic arterial hematocrit (Hct), and total protein and inulin concentrations in plasma. In addition, two or three samples of urine from the experimental (left) kidney were collected for determination of flow rate, inulin concentration, and calculation of whole kidney glomerular filtration rate (GFR). For these urine collections, an indwelling ureteral polyethylene catheter (PE-10) was inserted into the left ureter.

Time-averaged pressures were measured in surface glomerular capillaries (Pgc), proximal tubules (Pγ), and third order peritubular capillaries (Pce) with a continuous recording, servo-null micropipette transducer, employing pipettes with outer tip diameters of 2-4 μm and containing 2.0 M NaCl. Hydraulic output from the servo system was coupled electronically to a second channel of the Hewlett-Packard recorder by means of a pressure transducer. To estimate the colloid osmotic pressure of plasma entering and leaving glomerular capillaries, protein concentrations (C) in femoral arterial (Ca) and surface efferent arteriolar (Ca) blood plasmas were measured as described previously.* Colloid osmotic pressure (Pi) was calculated according to the equation of Deen et al.* Values for Ca, and thus Pi, for femoral arterial plasma were taken as representative of values of C and Pi for the afferent end of the glomerular capillary network. These estimates of pre- and postglomerular plasma protein concentration permit calculation of single nephron filtration fraction (SNFF) and initial glomerular capillary plasma flow rate (Qa), using equations given elsewhere.*

Saralasin Period

Upon completion of the initial measurements, all rats in each group were given a continuous intravenous infusion of saralasin acetate (Eaton Laboratories, Division of Morton Norwich Products, Inc., Norwich, New York) at the rate of 5.0 μg/kg/min (1.2 ml/hr). After a 30-minute equilibration period, all of the measurements and collections described above were repeated.

Analysis

The volume of fluid collected from individual proximal tubules was estimated from the length of the fluid column in a constant-bore capillary tube of known internal diameter. The concentration of inulin in tubule fluid was measured, usually in duplicate, by the microfluorescence method of Vurek and Pegram.* Inulin concentrations in plasma and urine were determined by the macroanthrone method of Führ et al.* Protein concentrations in efferent arteriolar and femoral arterial blood plasmas were determined, usually in duplicate, using the fluorometric method of Viets et al.* Statistical analysis was performed by the paired and unpaired t test, where appropriate. Statistical significance is defined as at least p < 0.05.

Results

PGE2 vs Control Group

Despite no significant change in ΔP relative to the control group, PGE2 led to a significant mean increase in Pgc 53 ± 1 (SEM) vs 49 ± 1 mm Hg (p < 0.001). Since values for Pγ were on average, the same for both groups (table 1), PGE2 led to a significantly higher mean value for ΔP, 41 ± 1 vs 37 ± 1 mm Hg (p < 0.001). The declines in GFR (1.04 ± 0.07 vs 1.13 ± 0.08 ml/min), SNGFR (35.2 ± 2.6 vs 39.5 ± 1.9 ml/min), and Qa (96 ± 7 vs 119 ± 6 ml/min) observed

*The systemic vasodepressor effects of PGE2 and PGI2, in the absence of prostaglandin synthetase inhibition, were elicited at dosages in excess of 2.0 μg/kg/min and 1.0 μg/kg/min, respectively. When prostaglandin synthetase inhibitors and saralasin were infused beginning 45 minutes prior to and during the dose-response trials, the systemic vasodepressor tendency for PGE2 and PGI2 was enhanced. Doses of 125 ng/kg/min for PGE2 and 62 ng/kg/min for PGI2 proved to be the maximal amounts that were unassociated with systemic hypotension; therefore, these dosages were employed in the present study.
Renal Vasoconstriction by Prostaglandins/Schor and Brenner 11-83

Table 1. Summary of Whole and Single Nephron Function in Rats Given Prostaglandins (PGE2 and PGI2) Before and During Saralasin (SAR) Infusion

<table>
<thead>
<tr>
<th>Rat group</th>
<th>AP (mm Hg)</th>
<th>PGC</th>
<th>PT</th>
<th>ΔP</th>
<th>GFR (ml/min)</th>
<th>SNGFR (nl/min)</th>
<th>QA (nl/min)</th>
<th>SNFF</th>
<th>RA (X10^10 dyn.s.cm^-6)</th>
<th>RE (X10^10 dyn.s.cm^-6)</th>
<th>RTA (X10^10 dyn.s.cm^-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n = 7)</td>
<td>111 ± 4</td>
<td>49</td>
<td>12</td>
<td>37</td>
<td>1.13 ± 0.08</td>
<td>39.5 ± 0.92</td>
<td>119 ± 2.6</td>
<td>0.32</td>
<td>2.1 ± 0.8 ± 0.32</td>
<td>1.8 ± 0.1 ± 0.2 ± 0.1</td>
<td>1.8 ± 0.1 ± 0.2 ± 0.1</td>
</tr>
<tr>
<td>pre-SAR period</td>
<td>106 ± 7</td>
<td>48</td>
<td>12</td>
<td>36</td>
<td>1.11 ± 0.08</td>
<td>40.2 ± 0.92</td>
<td>116 ± 2.6</td>
<td>0.34</td>
<td>2.1 ± 0.8 ± 0.32</td>
<td>1.8 ± 0.1 ± 0.2 ± 0.1</td>
<td>1.8 ± 0.1 ± 0.2 ± 0.1</td>
</tr>
<tr>
<td>SAR period</td>
<td>108 ± 3</td>
<td>53</td>
<td>12</td>
<td>41</td>
<td>1.04 ± 0.07</td>
<td>35.2 ± 0.92</td>
<td>96 ± 2.6</td>
<td>0.37</td>
<td>2.2 ± 0.8 ± 0.32</td>
<td>2.5 ± 0.1 ± 0.2 ± 0.1</td>
<td>2.5 ± 0.1 ± 0.2 ± 0.1</td>
</tr>
<tr>
<td>PGE2 (n = 10)</td>
<td></td>
</tr>
<tr>
<td>pre-SAR period</td>
<td>110 ± 4</td>
<td>54</td>
<td>12</td>
<td>42</td>
<td>0.92 ± 0.07</td>
<td>30.3 ± 0.92</td>
<td>82 ± 2.6</td>
<td>0.38</td>
<td>2.5 ± 0.8 ± 0.32</td>
<td>2.9 ± 0.1 ± 0.2 ± 0.1</td>
<td>2.9 ± 0.1 ± 0.2 ± 0.1</td>
</tr>
<tr>
<td>SAR period</td>
<td>108 ± 4</td>
<td>45</td>
<td>12</td>
<td>34</td>
<td>1.26 ± 0.11</td>
<td>50.0 ± 0.92</td>
<td>178 ± 2.6</td>
<td>0.29</td>
<td>1.7 ± 0.8 ± 0.32</td>
<td>0.9 ± 0.1 ± 0.2 ± 0.1</td>
<td>0.9 ± 0.1 ± 0.2 ± 0.1</td>
</tr>
<tr>
<td>PGI2 (n = 8)</td>
<td></td>
</tr>
<tr>
<td>pre-SAR period</td>
<td>106 ± 3</td>
<td>54</td>
<td>12</td>
<td>42</td>
<td>0.92 ± 0.07</td>
<td>30.3 ± 0.92</td>
<td>82 ± 2.6</td>
<td>0.38</td>
<td>2.5 ± 0.8 ± 0.32</td>
<td>2.9 ± 0.1 ± 0.2 ± 0.1</td>
<td>2.9 ± 0.1 ± 0.2 ± 0.1</td>
</tr>
<tr>
<td>SAR period</td>
<td>108 ± 4</td>
<td>45</td>
<td>12</td>
<td>34</td>
<td>1.26 ± 0.11</td>
<td>50.0 ± 0.92</td>
<td>178 ± 2.6</td>
<td>0.29</td>
<td>1.7 ± 0.8 ± 0.32</td>
<td>0.9 ± 0.1 ± 0.2 ± 0.1</td>
<td>0.9 ± 0.1 ± 0.2 ± 0.1</td>
</tr>
</tbody>
</table>

Values are expressed as means ± 1 se. AP = mean arterial pressure, PGC = average pressure in surface glomerular capillaries; PT = proximal tubules; ΠA = glomerular filtration pressure; QA = initial glomerular capillary plasma flow rate; SNFF = single nephron filtration fraction; RE = total renal arteriolar resistance.

Calculated from paired data; pre-saralasin vs saralasin period, p < 0.05.
Calculated from unpaired data; pre-saralasin period for each PG vs pre-saralasin period in control group, p < 0.05.
Calculated from unpaired data; saralasin period for each PG vs saralasin period in control group, p < 0.05.

in the PGE2 group, when compared with the control group, were not statistically significant. Mean values for SNFF were numerically higher in the PGE2 group (0.37 ± 0.02 vs 0.32 ± 0.02 p > 0.10) for the control group. Whereas mean values for RA were similar in these two groups (table 1), mean values for RE (2.5 ± 0.1 vs 1.8 ± 0.1 X10^9 dyn.s.cm^-6 p < 0.005), and thus RA (4.7 ± 0.2 vs 3.9 ± 0.1 X10^9 dyn.s.cm^-6 p < 0.05) were significantly higher in the PGE2 group.

As shown in table 2, mean values for Ck and Cm and thus, IIk and IIa, were similar in the PGE2 and control groups. For both groups, average values for IIa/ΔP were significantly less than unity, indicating that these animals were at filtration pressure disequilibrium.

Table 2. Summary of Effects of PGE2 and PGI2 on Determinants of SNGFR Before and During Saralasin (SAR) Infusion

<table>
<thead>
<tr>
<th>Rat group</th>
<th>Ck (g/dl)</th>
<th>Cm (g/dl)</th>
<th>Πa (mm Hg)</th>
<th>Πm (mm Hg)</th>
<th>Πa/ΔP</th>
<th>Kf (nl/(s.mm Hg))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n = 7)</td>
<td>5.8 ± 0.3</td>
<td>8.6 ± 0.2</td>
<td>19.1 ± 0.7</td>
<td>35.5 ± 1.5</td>
<td>0.93</td>
<td>0.081</td>
</tr>
<tr>
<td>pre-SAR period</td>
<td>5.6 ± 0.2</td>
<td>8.6 ± 0.2</td>
<td>18.3 ± 0.7</td>
<td>35.6 ± 1.6</td>
<td>0.92</td>
<td>0.080</td>
</tr>
<tr>
<td>SAR period</td>
<td>5.4 ± 0.2</td>
<td>8.4 ± 0.2</td>
<td>17.5 ± 0.4</td>
<td>34.3 ± 1.0</td>
<td>0.82</td>
<td>0.032</td>
</tr>
<tr>
<td>PGE2 (n = 10)</td>
<td>5.2 ± 0.2</td>
<td>7.5 ± 0.2</td>
<td>16.5 ± 0.6</td>
<td>28.5 ± 0.5</td>
<td>0.87</td>
<td>0.073</td>
</tr>
<tr>
<td>pre-SAR period</td>
<td>5.6 ± 0.1</td>
<td>9.1 ± 0.1</td>
<td>18.4 ± 0.3</td>
<td>39.1 ± 1.3</td>
<td>0.89</td>
<td>0.039</td>
</tr>
<tr>
<td>SAR period</td>
<td>5.4 ± 0.2</td>
<td>7.7 ± 0.2</td>
<td>17.4 ± 0.3</td>
<td>29.5 ± 1.0</td>
<td>0.87</td>
<td>0.088</td>
</tr>
</tbody>
</table>

Values are expressed as means ± 1 se. See table 1 for abbreviations.
Calculated from paired data; pre-saralasin vs saralasin period, p < 0.05.
Calculated from unpaired data; pre-saralasin period for each PG vs pre-saralasin period in control group, p < 0.05.
Calculated from unpaired data; saralasin period for each PG vs saralasin period in control group, p < 0.05.
Therefore, it was possible to calculate unique values for \(K_r \) in each group. The mean \(K_r \) value was significantly lower in the PGE\(_2\) group than in the control group, 0.032 ± 0.003 vs 0.081 ± 0.010 nl/(s. mm Hg) \((p < 0.001)\) respectively.

As shown in table 1, infusion of saralasin essentially reversed the effects of PGE\(_2\) on the renal microcirculation. Whereas values for GFR rose an average of 16\% (\(p < 0.05 \)), SNGFR, +10\% (\(p > 0.10 \)), and \(Q_A \), +45\% (\(p < 0.05 \)), mean values for \(P_{GC} \), \(\Delta P \), \(R_E \), and \(R_{TA} \) declined significantly. Due to a greater average increase in \(Q_A \), than in SNGFR, saralasin led to a significant decline in SNFF in PGE\(_2\)-treated rats, on the average from 0.37 ± 0.02 to 0.31 ± 0.02 (\(p < 0.05 \)). As shown in table 2, values for \(C_A \) and \(\Pi_A \) were largely unaffected by saralasin but \(C_E \) (7.5 ± 0.2 vs 8.4 ± 0.2 g/dl, \(p < 0.05 \)) and \(\Pi_E \) (28.5 ± 0.5 vs 34.3 ± 1.0 mm Hg, \(p < 0.05 \)) declined significantly in this second study period. Mean values for \(\Pi_E/\Delta P \) were unaffected by saralasin infusion in either group, indicating persistence of filtration pressure disequilibrium. Nevertheless, in response to saralasin the average value for \(K_r \) in the PGE\(_2\) group increased markedly, to a value indistinguishable from that in the control group (table 2).

PGI\(_1\) vs Control Group

Mean values in PGI\(_1\)-treated animals are summarized in tables 1 and 2. Average values for \(\Delta P \) were similar to those obtained in the control group. Values for \(P_{GC} \) in the PGI\(_1\) group averaged 54 ± 1 mm Hg, a value significantly higher (\(p < 0.001 \)) than in the control group, 49 ± 1 mm Hg. Since values for \(P_{E} \) were, on average, the same for both groups (table 1), PGI\(_1\) was associated with a significantly higher mean value for \(\Delta P \) (42 ± 1 vs 37 ± 1 mm Hg, \(p < 0.001 \)). PGI\(_1\) infusion also led to significantly lower mean GFR and SNGFR values than in the control group, averaging 0.92 ± 0.07 vs 1.13 ± 0.08 ml/min (\(p < 0.05 \)) and 30.3 ± 1.5 vs 39.5 ± 1.9 ml/min (\(p < 0.001 \)), respectively. Due to a larger average decline in \(Q_A \) (82 ± 5 vs 119 ± 6 ml/min, \(p < 0.001 \)) than in SNGFR with PGI\(_1\), SNFF rose significantly (0.38 ± 0.01 vs 0.32 ± 0.02, \(p < 0.05 \)) when compared with the control group. Whereas mean values for \(R_A \) were similar for these two groups, mean values for \(R_E \) (2.9 ± 0.2 vs 1.8 ± 0.1 \(\times 10^4 \) dyn.s.cm\(^{-1}\)) and \(R_{TA} \) (5.4 ± 0.4 vs 3.9 ± 0.1 \(\times 10^4 \) dyn.s.cm\(^{-1}\), \(p < 0.05 \)) were significantly higher in the PGI\(_1\) group.

As shown in the table 2, mean values for \(C_A \) and \(\Pi_A \) were also similar in these two groups, whereas values for \(C_E \) (9.1 ± 0.2 vs 8.6 ± 0.2 g/dl, \(p < 0.05 \)) and \(\Pi_E \) (39.1 ± 1.3 vs 35.5 ± 1.5 mm Hg, \(p < 0.05 \)) were significantly higher during PGI\(_1\) infusion than in the control group. The mean value for \(\Pi_E/\Delta P \) was significantly less than unity during PGI\(_1\) infusion (table 2), indicating filtration pressure disequilibrium. Unique values for \(K_r \) averaged 0.039 ± 0.006 nl/(s. mm Hg) in this group, a value significantly lower than in the control group (\(p < 0.005 \)).

During infusion of saralasin, \(\Delta P \) was not altered in rats given PGI\(_1\), whereas impressive and highly significant increases in GFR, SNGFR, and \(Q_A \) were observed (table 1). Indeed, values for these indices following saralasin were significantly higher than in the saralasin study period in the control group. The proportionately greater increase in \(Q_A \) than in SNGFR with saralasin in the PGI\(_1\) group led to a significant decline in SNFF, on the average from 0.38 ± 0.01 to 0.29 ± 0.01 (\(p < 0.025 \)). Due to a mean decrease in \(P_{GC} \), \(\Delta P \) declined by ~20% from its initial mean value (\(p < 0.05 \)). \(R_E \), \(R_A \), and \(R_{TA} \) declined significantly with saralasin to levels below those obtained in saralasin-treated control rats.

As shown in table 2, the average value for \(\Pi_E/\Delta P \) in the PGI\(_1\) group was unaffected by saralasin infusion, and the unique \(K_r \) values increased significantly to 0.088 ± 0.066 nl/(s. mm Hg), a value similar to that observed in control animals.

Discussion

The purpose of the present study was to examine the effects of PGE\(_2\) and PGI\(_1\) on the renal microcirculation. During infusion of a nonvasodepressor dose of PGE\(_2\), \(\Delta P \) rose significantly, due largely to an increase in \(P_{GC} \) (table 1). A mild decline in SNGFR and \(Q_A \) were observed. The latter due to an increase in \(R_E \) and \(R_{TA} \). PGE\(_2\) infusion led to an impressive reduction in \(K_r \).

These increases in \(\Delta P \), \(R_E \), \(R_{TA} \) and decreases in \(Q_A \) and \(K_r \) are changes usually seen when exogenous \(AII \) is infused,\(^1,^9\) or when endogenous \(AII \) levels are augmented, as during chronic low salt diet.\(^4\) This tendency to renal vasoconstriction is similar to that described previously.\(^1,^4\) During combined infusion of PGE\(_2\) and saralasin, GFR and SNGFR rose proportionately. Saralasin effectively antagonized the increases in \(R_E \) and \(R_{TA} \) induced by PGE\(_2\) alone and also reversed the declines in \(K_r \) and \(Q_A \). Saralasin, therefore, transformed the renal action of PGE\(_2\) from vasoconstrictor to vasodilator. Thus, in the Munich-Wistar rat, the action of systemic subvasodepressor PGE\(_2\) infusion on the renal circulation appears to involve an intermediate action of \(AII \).

In the control group, however, no significant effects of either prostaglandin inhibition alone or in combination with saralasin were found, suggesting that endogenous prostaglandin or \(AII \) plays little role in regulating glomerular hemodynamics under euvolemic conditions. An identical conclusion for the kidney as a whole has also been reported.\(^1,^9\) The effects of PGI\(_1\) on glomerular hemodynamics were qualitatively similar to those of PGE\(_2\) in that \(\Delta P \), \(R_E \), and \(R_{TA} \) increased whereas SNGFR, \(Q_A \), and \(K_r \) fell significantly (tables 1 and 2). In contrast to our observation, Baer et al.\(^1\) have reported that infusion of PGI\(_1\) at nonvasodepressor doses was without effect on total GFR. In the present study, however, the simultaneous infusion of prostaglandin inhibitor and
PGI₂ could cause an enhancement in the vasoactive effect of the latter, as reported by others,¹⁵,¹⁶ and thus lead to a ~20% fall in GFR and SNGFR, as observed. Our findings of a decrease in Qₚ with PGI₂ are similar to those reported by Baer and McGiff³ and Gerber and Nies,⁴ who observed significant decreases in renal blood flow during PGI₂ infusion in the rat. With respect to the total renal vascular resistance (RVR), however, PGE₂ infusion led to an increase in RVR¹⁴ although for PGI₂, Baer and McGiff³ reported that the mean value for RVR did not differ from the control or was only slightly reduced.¹¹ During combined saralasin and PGI₂ infusion, however, the striking vasoconstrictor effects of PGI₂ on the renal cortical microcirculation were largely abolished. Indeed, in the presence of saralasin, the action of PGI₂ was transformed from that of a potent vasoconstrictor (low Qₚ and high Rₜₐ) to an equally potent vasodilator (high Qₚ and low Rₜₐ).

Therefore, our data suggest that systemic subepidural infusion of PGE₂ and PGI₂ leads to augmented renin release and intrarenal AI formation. The increases in the intrarenal AI levels blunt the renal vasodilatory effects of PGs, leading to a pattern of renal vasoconstriction in rats. This also could explain the systemic hypertension observed in dogs by Hockel and Cowley¹⁴ during a chronic systemic subepidural infusion of PGE₂.

Finally, the most pronounced effect on the renal microcirculation observed with PGI₂ could be due to a higher potency in stimulating glomerular adenylate cyclase.¹⁸ Since cAMP has been invoked as a second messenger in regulating vascular smooth muscle tone as well as renin release from the juxtaglomerular apparatus,¹⁸,¹⁹ an enhanced stimulation of glomerular cAMP production by PGI₂ might therefore contribute to the more pronounced effects of PGI₂ than PGE₂ observed in our present study.

Acknowledgments

The authors are grateful to Julia Troy, Nancy Illes, and Michele Pavia for expert technical assistance, and Janeté Claudía Machado for expert secretarial assistance. We thank Dr. J. E. Pike of the Upjohn Company for the generous donation of prostaglandins I₂ and E₂.

References

Possible mechanism of prostaglandin-induced renal vasoconstriction in the rat.
N Schor and B M Brenner

Hypertension. 1981;3:II-81
doi: 10.1161/01.HYP.3.6_Pt_2.II-81

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/3/6_Pt_2/II-81

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/