Hypertension Optimal Treatment (HOT) Study
Home Blood Pressure in Treated Hypertensive Subjects

Sverre E. Kjeldsen, Thomas Hedner, Kenneth Jamerson, Stevo Julius, William E. Haley, Miguel Zabalgoitia, Amir R. Butt, S. Noor Rahman, Lennart Hansson, for the HOT Study Group

Abstract—The Hypertension Optimal Treatment Study is a prospective trial conducted in 26 countries. The aims are to (1) evaluate the relationship between three levels of target office diastolic blood pressure (BP) (≤80, ≤85, or ≤90 mm Hg) and cardiovascular morbidity and mortality in hypertensive patients and (2) examine the effects on cardiovascular morbidity and mortality of 75 mg aspirin daily versus placebo. A total of 19,193 patients between 50 and 80 years of age had been randomized by the end of April 1994. Treatment was initiated with felodipine 5 mg daily, and additional therapy was given in accordance with a set protocol. The present substudy of 926 patients performed in nine countries aimed to (1) compare home with office BP in a representative subsample of the HOT population after the titration of treatment was completed and (2) clarify whether the separation into the target groups could be expanded into the out-of-office setting. The differences between office and home measurements in diastolic BP of 0.2 mm Hg (SD, 9; 95% confidence interval, −0.36 to 0.81; P = .40) and systolic BP of 0.5 mm Hg (SD, 15; 95% confidence interval, −0.53 to 1.46; P = .21) were not significant. The group differences in home BP were 1.9 mm Hg (≤80 versus ≤85) and 1.2 mm Hg (≤85 versus ≤90) for diastolic BP (F = 11.69; ANOVA, P < .0001) and 2.6 and 2.1 mm Hg for systolic BP (F = 8.44, P = .0002). Thus, office and home BPs measured with the same semiautomatic device are comparable in treated hypertensive subjects in the HOT Study, and the separation into the target groups based on office readings prevails at home. (Hypertension. 1998;31:1014-1020.)

Key Words: antihypertensive agents ▪ blood pressure monitoring ▪ cardiovascular diseases ▪ clinical trials ▪ hypertension, white coat

The Hypertension Optimal Treatment (HOT) Study is a multicenter trial being conducted in 26 countries. The rationale and background have been described in detail previously. The HOT Study is conducted in accordance with the PROBE design. The main aim is to evaluate the relationship between three levels of target diastolic BP (≤80, ≤85, or ≤90 mm Hg) and cardiovascular morbidity and mortality in hypertensive patients. In addition, the study will examine the effects on morbidity and mortality of a low dose (75 mg daily) of acetylsalicylic acid or double-blind placebo.

When the inclusion of patients was stopped on April 30, 1994, 19,193 patients between 50 and 80 years of age had been randomized. Basic antihypertensive treatment was initiated with the calcium channel blocker felodipine (5 mg daily). If target blood pressure was not reached, additional antihypertensive therapy was given in accordance with a set protocol. Details of the patient characteristics at randomization, cardiovascular risk profiles, and early BP results have previously been published.

Home BP monitoring can easily be taught and learned, and it has a high reproducibility and sensitivity of measurement. Because of the lack of prospective mortality/morbidity data, home BP monitoring cannot be used alone to decide whether treatment is indicated, and treatment decisions must still be based on repeated standard clinic BP readings. Home BP has been investigated in a large study of normotensive and untreated hypertensive subjects. However, large studies of home BP in treated hypertensive patients have not been done. This is particularly feasible in the HOT Study because of the standardization of measurements of BP with a semiautomatic device and the subsequent possibility to train subjects at every office visit. Therefore, the aim of the present study was to compare home BP with office BP in a large and representative subsample of the HOT Study population after the titration of antihypertensive treatment. The study also aimed to clarify whether the separation of subjects into the three main groups (≤80, ≤85, or ≤90 mm Hg) based on office readings could be expanded into the out-of-office setting.

Received July 2, 1997; first decision August 20, 1997; revision accepted December 4, 1997.
From the Division of Cardiology, Ulleval University Hospital, Oslo, Norway (S.E.K.); the Department of Clinical Pharmacology, Sahlgrenska University Hospital, Gothenburg (T.H.); and Clinical Hypertension Research, University of Uppsala, Uppsala (L.H.), Sweden; the Division of Hypertension, University of Michigan Medical Center (Ann Arbor) (K.J., S.J.); Mayo Clinic, Jacksonville, Fla (W.E.H.); the Division of Cardiology, University of Texas Health Science Center at San Antonio (M.Z.); and the Division of Renal Diseases and Hypertension, University of Texas Health Science Center at Houston (A.R.B, S.N.R.).
Correspondence to Sverre E. Kjeldsen, MD, PhD, Division of Cardiology, Department of Internal Medicine, Ulleval Hospital, N-0407 Oslo, Norway.
E-mail sverrekJ@ulrik.sio.no
© 1998 American Heart Association, Inc.
Subjects
In the main study, a total of 19193 hypertensive patients of any race aged 50 to 80 years were randomized in 26 countries. Details of their characteristics at randomization have previously been published. The average mean±SD randomization BP in patients untreated at enrollment was 169±14/106±3 mm Hg; in the treated patients, after at least 2 weeks of washout, the mean±SD BP was 170±14/105±3 mm Hg. The three target BP groups were well matched at the outset of the study.

There were no additional criteria for participation in the home BP substudy except for patient willingness. For practical reasons, the study was limited to 88 centers from a total of 1921 participating centers in the HOT Study. The sample (n=926) that participated in the substudy contained a higher percentage of previously treated subjects (66% versus 52%); otherwise, characteristics were comparable with those of the subjects in the main study (Table 1). The distribution of the 926 patients between countries was as follows: Canada 72, Greece 34, Hungary 36, Israel 10, The Netherlands 19, Norway 109, Spain 124, Sweden 82, and United States 440 patients.

Protocol
Patients in the HOT Study were recruited after giving informed consent provided that the substudy had been approved by the local ethics committee in the respective country. BP was measured at enrollment and then at two qualifying visits at least 7 days apart. The ethics committee in the respective country had to be informed about the study. BP was measured at randomization, mm Hg

TABLE 1. Characteristics of Hypertensive Patients* in the Main Part of the HOT Study Compared With Subjects in the Home Blood Pressure Substudy

<table>
<thead>
<tr>
<th>Variable</th>
<th>Main Study (n=19193)</th>
<th>Substudy (n=926)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>61.5±7.5</td>
<td>61.1±7.2</td>
</tr>
<tr>
<td>Men, %</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>85±14</td>
<td>89±14</td>
</tr>
<tr>
<td>Height, cm</td>
<td>173±7</td>
<td>174±8</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight, kg</td>
<td>74±14</td>
<td>76±15</td>
</tr>
<tr>
<td>Height, cm</td>
<td>161±7</td>
<td>160±7</td>
</tr>
<tr>
<td>Previously treated, %</td>
<td>52</td>
<td>66</td>
</tr>
<tr>
<td>BP at randomization, mm Hg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previously untreated</td>
<td>169±14/106±3</td>
<td>168±15/105±4</td>
</tr>
<tr>
<td>Previously treated</td>
<td>170±14/105±3</td>
<td>169±15/105±4</td>
</tr>
<tr>
<td>Serum creatinine, μmol/L</td>
<td>89±24</td>
<td>94±22</td>
</tr>
<tr>
<td>Serum cholesterol, mmol/L</td>
<td>6.1±1.2</td>
<td>5.9±1.1</td>
</tr>
<tr>
<td>Smokers, %</td>
<td>15.8</td>
<td>13.3</td>
</tr>
<tr>
<td>Diabetes mellitus, %</td>
<td>8.4</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Values are mean±SD.

*Patients of any race aged 50 to 80 y.
Results

Within-individual SD for home BP for all patients (n=926) was as follows for (1) calculations between all days: diastolic BP 4.7 mm Hg (5.7%), systolic BP 7.3 mm Hg (5.3%), and HR 4.5 bpm (6.0%); (2) calculations between morning and afternoon on the same day: diastolic BP 6.5 mm Hg (7.9%), systolic BP 9.8 mm Hg (7.1%), and HR 6.6 bpm (8.8%); and (3) calculations between three measurements at the same occasion: diastolic BP 4.8 mm Hg (5.8%), systolic BP 7.8 mm Hg (5.7%), and HR 3.5 bpm (4.7%).

The difference found in diastolic BP of 0.2±9.0 mm Hg between home and office measurements was not statistically significant (Table 2); neither could any significant difference between home and office be related to previous treatment status (treated versus untreated), age, race, or level of serum cholesterol or serum creatinine at randomization (data not shown). However, for the target group randomized to clinic diastolic BP ≤90, there was a slightly lower diastolic BP measured at home. This difference between office and home readings was significant (Table 2), as was the case for readings taken by female subjects (Δ1.16 mm Hg; 95% CI, 0.26 to 2.06 mm Hg; P=.003; n=418) and patients with body mass index <28.1 kg/m² (Δ0.85 mm Hg; 95% CI, 0.00 to 1.70; P=.047; n=395).

One-way ANOVA between the target groups showed differences for diastolic BP measured in the office (F=30.93, P<.0001) and at home (F=11.69, P<.0001). For the three diastolic BP target groups, the differences in office measurements between the groups were 3.0 mm Hg (≤80 versus ≤85, P<.05), 1.8 mm Hg (≤85 versus ≤90, P<.05), and 4.8 mm Hg (≤80 versus ≤90, P<.05). These differences were fairly comparable to the differences between the groups obtained during home BP measurements: 1.9 mm Hg (≤80 versus ≤85, P<.05), 1.2 mm Hg (≤85 versus ≤90, NS), and 3.1 mm Hg (≤80 versus ≤90, P<.05), respectively.

The difference in systolic BP measured in the office compared with at home averaged 0.5±15.3 mm Hg for all patients and was not statistically significant (Table 2). There were minimal differences between office and home systolic BP measurements with respect to previous treatment status, age, race, or level of serum creatinine at randomization (data not shown). For the treatment group targeted at ≤90 mm Hg, the lower systolic BP at home compared with office was significant (Table 2), which was also the case for women (Δ1.69 mm Hg; 95% CI, 0.13 to 3.25; P=.012; n=419), patients with body mass index <28.1 kg/m² (Δ2.08 mm Hg; 95% CI, 0.58 to 3.58; P=.007; n=395), and patients with serum cholesterol ≥6.1 mmol/L (Δ1.58 mm Hg; 95% CI, −0.09 to 3.26; P=.015; n=376).

One-way ANOVA between target groups showed differences for systolic BP in the office (F=19.49, P<.0001) and at home (F=8.44, P=.0002). For the three diastolic BP target groups, the differences between the groups during office measurements were 4.2 mm Hg (≤80 versus ≤85, P<.05), 3.3 mm Hg (≤85 versus ≤90, P<.05), and 7.5 mm Hg (≤80 versus ≤90, P<.05), which is fairly comparable to the differences between the groups during home BP measurements: 2.6 mm Hg (≤80 versus ≤85, P<.05), 2.1 mm Hg (≤85 versus ≤90, NS), and 4.7 mm Hg (≤80 versus ≤90, P<.05), respectively.

Table 2. Comparison of BP and HR Taken in the Office and by Self-Assessment at Home

<table>
<thead>
<tr>
<th>Variable and Target Group</th>
<th>Office</th>
<th>Home</th>
<th>Difference, Office-Home</th>
<th>95% CI</th>
<th>P†</th>
<th>95% Limits of Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diastolic BP, mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (n=914)</td>
<td>82.7±7.9</td>
<td>82.5±7.9</td>
<td>0.2±9.0</td>
<td>−0.36-0.81</td>
<td>NS</td>
<td>−17.4-17.9</td>
</tr>
<tr>
<td>≤90 (n=302)</td>
<td>84.9±8.2</td>
<td>83.9±7.5</td>
<td>1.0±9.0</td>
<td>0.03-2.05</td>
<td>0.05</td>
<td>−16.6-18.6</td>
</tr>
<tr>
<td>≤85 (n=313)</td>
<td>83.1±7.3</td>
<td>82.7±8.1</td>
<td>0.4±8.7</td>
<td>−0.55-1.37</td>
<td>NS</td>
<td>−16.5-17.4</td>
</tr>
<tr>
<td>≤80 (n=299)</td>
<td>80.1±7.5</td>
<td>80.8±7.7</td>
<td>−0.8±9.3</td>
<td>−1.84-0.26</td>
<td>NS</td>
<td>−19.0-17.4</td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (n=915)</td>
<td>137.5±15.1</td>
<td>137.0±14.2</td>
<td>0.5±15.3</td>
<td>−0.53-1.46</td>
<td>NS</td>
<td>−29.5-30.5</td>
</tr>
<tr>
<td>≤90 (n=302)</td>
<td>141.1±15.7</td>
<td>139.3±14.2</td>
<td>1.8±15.0</td>
<td>0.09-3.48</td>
<td>0.024</td>
<td>−27.7-31.3</td>
</tr>
<tr>
<td>≤85 (n=313)</td>
<td>137.8±15.3</td>
<td>137.2±14.0</td>
<td>0.6±15.0</td>
<td>−1.07-2.27</td>
<td>NS</td>
<td>−28.9-30.1</td>
</tr>
<tr>
<td>≤80 (n=299)</td>
<td>133.6±13.1</td>
<td>134.6±14.0</td>
<td>−1.0±15.8</td>
<td>−2.80-0.77</td>
<td>NS</td>
<td>−31.9-29.9</td>
</tr>
<tr>
<td>HR, bpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (n=911)</td>
<td>76.7±12.3</td>
<td>75.0±10.6</td>
<td>1.7±8.6</td>
<td>1.09-2.21</td>
<td>0.0001</td>
<td>−15.2-18.5</td>
</tr>
<tr>
<td>≤90 (n=302)</td>
<td>77.6±11.8</td>
<td>75.8±10.9</td>
<td>1.8±8.4</td>
<td>0.84-2.73</td>
<td>0.0007</td>
<td>−14.7-18.2</td>
</tr>
<tr>
<td>≤85 (n=313)</td>
<td>77.1±12.7</td>
<td>75.5±10.6</td>
<td>1.6±9.2</td>
<td>0.54-2.58</td>
<td>0.017</td>
<td>−16.4-19.5</td>
</tr>
<tr>
<td>≤80 (n=299)</td>
<td>75.4±12.3</td>
<td>73.7±10.4</td>
<td>1.6±8.2</td>
<td>0.68-2.54</td>
<td>0.005</td>
<td>−14.4-17.7</td>
</tr>
</tbody>
</table>

Values are mean±SD.

†Test of systematic changes.

by the mean difference and a 95% CI of the mean difference between the two methods. To study how well the two methods were likely to agree for an individual, the limit of agreement (mean±2 · SD) was calculated.11 For comparison between home and office BP, Wilcoxon’s signed rank test for matched pairs was used. Pearson correlation coefficients (r) were calculated. Methods of BP measurement were also compared by plotting the difference between two methods for each subject against the average of BP measured by the two techniques. A one-way ANOVA was used for the overall test between target groups. Tukey-Kramer studentized range test12 was used for pairwise post hoc comparisons between target groups.
HR averaged 1.7 bpm higher in the office compared with at home (SD 8.6), and this difference, although rather small, was statistically significant (Table 2). This office-home difference in HR was stable among the three different BP target groups and in relation to the various demographic variables at randomization (data not shown). For the three diastolic BP target groups, the differences in HR between the groups during office measurements were 1.7 bpm (≤80 versus ≤85, NS) and 0.5 bpm (≤85 versus ≤90, NS). These differences were largely comparable to the differences between the groups during home measurements: 1.8 bpm (≤80 versus ≤85, P<.05) and 0.3 bpm (≤85 versus ≤90, NS), respectively.

For all patients there were statistically significant correlations (P<.0001 for all) between office and home measurements for diastolic BP (r=.35), systolic BP (r=.45), and for HR (r=.73). These correlations are shown in Fig 1, whereas the plots of the differences between office-home against the means of office and home for each patient are shown in Fig 2. The coefficients of regression for systolic BP (P<.05) and for HR (P<.001) between differences in office-home and mean (office-home) are significant. The variance explained is 0.4% for systolic BP and 4% for HR.

There was a significant (P<.0001) mean±SD decrease of 1.2±5.5 mm Hg in diastolic BP from morning (83.1±8.4 mm Hg) to afternoon (81.9±8.2 mm Hg). Corresponding values for systolic BP were 137.5±14.6 and 136.6±15.0 mm Hg (P<.001) and for HR 73.9±10.9 and 76.2±11.1 bpm (P<.0001). There were significant correlations (P<.0001 for all) between average measurements in the morning and in the afternoon for diastolic BP (r=.78), systolic BP (r=.84), and HR (r=.87) (Fig 3). Fig 4 shows the plots of the differences between afternoon-morning against the means of afternoon and morning for each patient. There are not any significant coefficients of regression for BPs or HR between differences in afternoon-morning and mean (afternoon-morning).

The numbers of patients who had home and office BPs within ±10 mm Hg, home BP ≥10 mm Hg higher than office BP, and office BP >10 mm Hg higher than home BP were 700, 98, and 116 for diastolic BP and 477, 207, and 231 for systolic BP, respectively.

Discussion

The present substudy to the HOT trial of 926 patients in nine countries aimed to compare home BP with office BP in a representative subsample after the titration of treatment and to clarify whether the separation in main BP target groups (≤80, ≤85, or ≤90 mm Hg) observed in the office could be expanded into the out-of-office setting. Small office-home differences in measured diastolic and systolic BPs were not significant. However, HR was significantly higher in the office compared with at home. For the three BP target groups, the differences between the groups during office BP measurements were 1.9 mm Hg (≤80 versus ≤85) and 1.2 mm Hg (≤85 versus ≤90) for diastolic BP and 2.6 and 2.1 mm Hg for systolic BP, respectively.

Some previous large-scale trials in mild-to-moderate hypertension have undoubtedly included substantial numbers of borderline and white coat hypertensive subjects with low risk. Our results show that the patients in the HOT Study have comparable treated (“target”) BPs in the doctor’s office and at home (r=.45), for diastolic BP in the office and at home (r=.35), and similarly for HR (r=.73).
three BP target groups based on office readings prevails in the out-of-office setting, which increases the likelihood of detecting differences between the groups in cardiovascular events in the main HOT Study.

Ambulatory BPs over 24 hours may be somewhat lower than self-measured BP at home.15–18 The reason for this difference seems to be that the former technique includes nighttime BP, which is lower than daytime BP in most subjects.19 Awake ambulatory BP, however, compares rather well to self-assessed home BP in a large study,8 suggesting that the home BPs measured in the present study, although not directly compared, are representative for daytime BP.

Devices for home BP monitoring have been extensively tested. The National High Blood Pressure Education Program of the United States concluded20 that all three types of devices (mercury, aneroid, and electronic) are reasonably accurate for home use, provided they are properly calibrated and individuals using them appropriately trained. However, Evans et al,21 who also tested a range of equipment types (mercury, aneroid, and electronic), found that 11 (48%) of the 23 devices they tested were inconsistent with duplicates of the same devices and failed the standards for automated devices of the Association for the Advancement of Medical Instrumentation. Fewer than 25% of the devices were considered suitable for home use on the basis of accuracy, reliability, and ease of use. Thus, care must be taken in the choice of device, and training is required for all devices.21

Figure 2. For all patients (n=914) these plots show the differences between office-home against the means of office and home for each patient. The standard deviations are drawn in.

Figure 3. For all patients (n=926) these plots show significant correlations (P<.0001 for all) between average measurements in the morning and in the afternoon for systolic BP (r=.84), diastolic BP (r=.78), and HR (r=.87).
that the patients had any white coat effect or alerting reaction with at home, there was no clear evidence in the HOT Study. The accuracy went through the measurement procedure repeatedly at the clinic visits before taking home measurements. The accuracy of the home measurements could be noted by (1) the low SDs compared with the office readings, and (3) the rather strong correlations between morning and afternoon registrations taken by the patients themselves. Despite the higher HR measured in the office compared with home, there was no clear evidence in the HOT Study that the patients had any white coat effect or alerting reaction. However, it may also be speculated whether the use of a semiautomatic device with digital readout by itself dampens the white coat effect and makes it insignificant. If this is the case, this technique for measurement of BP could preferentially be used in the screening for subjects in future large-scale clinical hypertension trials.

In conclusion, office and home BPs are comparable in treated hypertensive subjects in the HOT Study, and the separation into target groups based on office readings prevails in the out-of-office setting.

Appendix

Acknowledgments

This work was supported in part by a grant-in-aid from Astra. Nils-Gunnar Pehrsson at the HOT Coordinating Center at Östra Hospital in Göteborg, Sweden, is acknowledged for data processing and statistical work.
References

Hypertension Optimal Treatment (HOT) Study: Home Blood Pressure in Treated Hypertensive Subjects
for the HOT Study Group

Hypertension. 1998;31:1014-1020
doi: 10.1161/01.HYP.31.4.1014

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1998 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/31/4/1014

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Hypertension* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Hypertension* is online at:
http://hyper.ahajournals.org//subscriptions/