Elevated Fos Expression in the Nucleus Tractus Solitarii Is Associated With Reduced Baroreflex Response in Spontaneously Hypertensive Rats

Abstract—We delineated the functional role of Fos protein at the nucleus tractus solitarii in the manifestation of reduced baroreceptor reflex control of heart rate during hypertension, using spontaneously hypertensive rats (SHR), stroke-prone SHR, Wistar-Kyoto rats, or Sprague-Dawley rats. Microinjection into the bilateral nucleus tractus solitarii of an antisense oligonucleotide that targets against the initiation codon of c-fos mRNA significantly potentiated the baroreceptor reflex in response to 30 minutes of sustained increase in blood pressure. Of particular note was the restoration of both the impaired sensitivity and capacity of baroreceptor reflex in SHR and stroke-prone SHR to levels comparable to those in normotensive rats. Likewise, the number of Fos-immunoreactive nuclei evoked by the sustained increase in blood pressure in the caudal nucleus tractus solitarii of SHR and stroke-prone SHR was reduced, after this antisense c-fos treatment, to the basal level exhibited by the normotensive animals. Control treatment with the corresponding sense oligonucleotide, an antisense oligonucleotide that targets against a different portion of the coding sequence of the c-fos mRNA or artificial cerebrospinal fluid, on the other hand, elicited no discernible effect on either the baroreceptor reflex response or the induced expression of Fos protein in the nucleus tractus solitarii by baroreceptor activation. We also found that the basal level of Fos expression in the caudal nucleus tractus solitarii was significantly elevated in the SHR and stroke-prone SHR. Together, these novel findings suggest that an elevated expression of basal Fos protein in the NTS during hypertension may be associated with the dysfunction in baroreceptor reflex control of heart rate. (Hypertension. 1998;32:939-944.)

Key Words: antisense elements ■ baroreflex ■ hypertension, genetic ■ rats

Maintenance of a stable blood pressure through the arterial baroreceptor reflex (BRR) is a fundamental operating mechanism in central cardiovascular regulation. As such, impairment of BRR control of heart rate (HR) has been demonstrated in hypertensive patients and animals with genetic or experimentally induced hypertension. In addition to alterations in the afferent limb of this reflex, abnormalities in the brain stem components of the reflex arc have been implicated as causes for BRR dysfunction in hypertension. These result in a rightward shift (resetting) of the blood pressure–heart rate curve, a decrease in reflex gain, and a reduction in maximal bradycardia. Since a reduced BRR response is common among hypertension with different etiologies, it has been suggested that deficits in the BRR control of HR are not genetically determined but are a consequence of hypertension. Nonetheless, the precise mechanisms that underlie these BRR abnormalities after the onset of hypertension are not fully understood.

The immediate early gene c-fos and its protein product, Fos, are now known to couple short-term transsynaptic events to long-term changes in cellular phenotype by regulation of gene expression in neurons. In this regard, an increase in systemic arterial pressure (SAP) induces the expression of Fos protein in the nucleus tractus solitarii (NTS), the principal recipient of primary baroreceptor afferent fibers in the brain stem. We further reported that Fos expression in the NTS represents an early intracellular event that leads to long-term inhibitory modulation of BRR response. Whether Fos protein in the NTS plays a role in the manifestation of the reduced BRR response during hypertension is hitherto unknown.

The present study was performed to assess the hypothesis that an enhanced expression of Fos protein in the NTS is associated with the reduced BRR response during chronic hypertension, with the use of normotensive and genetically hypertensive rats. Our fundamental strategy was to block Fos expression in the NTS with an antisense oligonucleotide against c-fos mRNA and to examine the resultant alterations in BRR response, SAP, and HR. Our findings essentially validated the hypothesis and suggest a permissive role for c-fos gene at the NTS in the manifestation of a reduced BRR sensitivity during hypertension.
Methods

Animals
Experiments were performed in compliance with the Guiding Principles in the Care and Use of Animals endorsed by our institutional animal care committee. Male, adult (age, 14 to 20 weeks; weight, 230 to 300 g) normotensive Sprague-Dawley rats (SD), normotensive Wistar-Kyoto rats (WKY), or spontaneously hypertensive rats (SHR) or their stroke-prone substrains (SHRSP) were used.

General Preparation
Rats were anesthetized initially with pentobarbital sodium (40 mg/kg IP) to perform intubation of the trachea and cannulation of the right femoral artery and both femoral veins. Animals received thereafter a continuous infusion of pentobarbital sodium (10 to 15 mg/kg per hour IV). This management scheme was found to provide satisfactory anesthetic maintenance throughout the experiment while preserving the capacity of central cardiovascular regulation, including the BRR response.21 Pulsatile and mean systemic arterial pressure (MSAP), as well as HR, were recorded on a polygraph (Gould ES1000). Animals were mechanically ventilated to maintain the end-tidal CO2 to be within 4% to 5%, as monitored by a capnograph (Datex Nornocap). All data were collected from animals with a maintained rectal temperature of 37±0.5°C throughout the experiment.

Microinjection of Oligonucleotides into the NTS
Three 15-mer phosphorothioated c-fos oligonucleotides (Quality System, Taipei, Taiwan) were microinjected stereotaxically into the bilateral NTS as described previously.17,20,22,23 The key antisense oligonucleotide (ASON1) targets against a region of the c-fos mRNA that flanks the initiation codon (5′-129 to 143–3′). Our treatment controls included a sense c-fos oligonucleotide (SON) and an antisense oligonucleotide (ASON2) that targets against the initiation codon and a different portion of the coding sequence (5′-135 to 149–3′) of the c-fos mRNA. Animals that were surgically prepared, placed in the stereotaxic headholder without subsequent experimental treatments, and maintained by intravenous infusion of pentobarbital for 120 minutes served as the sham control. Animals that received microinjection of artificial cerebrospinal fluid (aCSF) (pH 7.4) into the bilateral NTS served as the volume and vehicle control.

Evaluation of BRR Response
The arterial baroreceptors were activated by an increase in SAP evoked by infusion of phenylephrine for 30 minutes. Because of the difference in responsiveness to this vasoactive agent between normotensive and hypertensive rats, the rate of infusion was adjusted (50 mm Hg). The slope of the regression line that relates the reduction in SAP to the change in HR, was considered statistically significant. The maximal reflex bradycardia during the sustained stage of pressor response was taken as the capacity of BRR control of HR. Based on the analysis of both reflex sensitivity and maximal bradycardiac capacity in response to an increase in SAP, we found an enhancement in BRR response in SD, WKY, SHR, and SHRSP after microinjection into the bilateral NTS of an antisense oligonucleotide (ASON1, 50 pmol) directed against the c-fos mRNA. As shown in Table 1, the slope of individual regression lines that relate decreases in HR to increases in SAP was significantly increased after administration of ASON1 to the bilateral NTS. We noted, however, that similar to previous reports,1–4,6,10 this index of BRR sensitivity in SHR or SHRSP rats that received aCSF pretreatment, for example, was significantly lower than that detected in SD or WKY. When this difference is taken into consideration, it is immediately apparent that there was a much greater enhancement in the sensitivity of BRR control of HR in SHR or SHRSP (150% or 101%, respectively) than in SD or WKY (75% or 66%, respectively) treated with ASON1. As a result (Table 1), microinjection of ASON1 bilaterally into the NTS essentially reversed the impaired sensitivity of reflex control of HR in SHR and SHRSP to levels not different from those in aCSF-treated SD or WKY. However, the potentiation of BRR sensitivity by ASON1 treatment was significantly greater in SHR than in SHRSP (Table 1).

Immunohistochemical Staining and Quantification of Fos-Like Immunoreactivity
At the conclusion of the physiological experiments, animals were processed for immunohistochemical staining of Fos protein, as described previously.17,18,21 A sheep polyclonal antiserum (Genosys Biotechnologies OA-11–824A; 1:4000) against c-fos was used, and Fos-like immunoreactivity (Fos-LI) was visualized by a Vectastain ABC kit (Vector). As a routine, sections from various strains of rats serving the capacity of central cardiovascular regulation, including the BRR response,17,18,20,22,23 were stained with a sheep antiserum that received the same treatment schedules were processed together with the anti-Fos antiserum or with substitution of Fos antiserum with PBS. The number of Fos-positive cells at the NTS in BRR response were examined in all 4 strains of rats. Each c-fos oligonucleotide or aCSF was microinjected directly into the bilateral NTS 24 hours before the introduction of sustained increase in blood pressure. Animals were killed 120 minutes after baroreceptor activation, and brain sections were processed for Fos-LI in the NTS.

Statistical Analysis
All values are expressed as mean±SEM. One-way or 2-way ANOVA was used, as appropriate, to assess the difference between experimental groups. This was followed by the Scheffé multiple range test for a posteriori comparison of individual means. P<0.05 was considered statistically significant.

Results
Effect of ASON1 Antisense c-fos Oligonucleotide Treatment on BRR Response

Based on the analysis of both reflex sensitivity and maximal bradycardiac capacity in response to an increase in SAP, the area under the curve (AUC) was calculated to determine the change in SAP and HR for the duration of the pressor response. The area under the curve for SAP or HR was determined for each rat and expressed as a percentage of the control value. The AUC was calculated using the trapezoidal method.

Table 1. Effect of ASON1 Antisense Oligonucleotide Treatment on BRR Response

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NTS</th>
<th>BRR Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>aCSF</td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>ASON1</td>
<td></td>
<td>+128%</td>
</tr>
</tbody>
</table>

The criterion for identification of Fos-LI was a distinctly stained nucleus.16,18,20,22,23 The caudal medulla oblongata was divided into 8 levels, at 200-μm intervals, between 1.0 mm caudal and 0.4 mm rostral to the obex. Five sections were selected randomly from each level, and the number of Fos-LI was counted bilaterally by 2 individuals in a blinded fashion. The mean number of the Fos-positive cells for each level of the NTS was tabulated. We noted a good interobserver agreement, as evaluated by the Wilcoxon signed-rank test (P=0.10, n=128).
greater in SHR or SHRSP (151% or 110%, respectively) than in SD or WKY (76% or 66%, respectively) that were treated with ASON1. Similar to the BRR slopes, there was a decrease in the capacity of BRR control of HR in the SHR or SHRSP compared with normotensive SD or WKY (Figure 1). Micro-injection of ASON1 bilaterally into the NTS also restored this reduced BRR capacity in SHR and SHRSP to levels not different from those in the aCSF-treated SD or WKY. The potentiation by ASON1 treatment of the maximal reflex bradycardia was again significantly greater in SHR than in SHRSP.

With adjustment of the rate of infusion, no significant difference ($P=0.998$) in the magnitude of pressor responses to systemic infusion of phenylephrine was detected among SD, WKY, SHR, and SHRSP.

Effect of ASON1 Antisense c-fos Oligonucleotide Treatment on SAP and HR

Compared with aCSF control, microinjection of ASON1 into the bilateral NTS resulted in a significant decrease in SAP and HR in SHR and SHRSP (Table 2), although the respective SAP remained higher than that recorded from aCSF-treated SD or WKY. In contrast, ASON1 treatment elicited no significant effect on baseline SAP or HR in SD or WKY.

Effect of ASON1 Antisense c-fos Oligonucleotide Treatment on Sustained Increase in Blood Pressure

Sustained increase in blood pressure also induced expression of Fos-LI in the NTS of SD, WKY, SHR, and SHRSP (Figure 2). Those Fos-positive neurons concentrated primarily at levels of the NTS that extended from 0.8 caudal to 0.2 rostral to the obex and exhibited similar topographic distribution patterns. Quantitative analysis also revealed no significant difference among these 4 strains of rats in the number of Fos-positive nuclei detected in the caudal NTS after sustained increase in SAP.

Twenty-four hours after microinjection into the bilateral NTS of ASON1, the Fos-LI normally induced in the NTS 120 minutes after sustained increase in SAP was markedly reduced in SD, WKY, SHR, and SHRSP (Figure 2). Such a decrease in Fos expression was localized primarily in the ventral lateral medulla in animals that received ASON1 antisense oligonucleotide treatment.

Effect of Control c-fos Oligonucleotides on BRR Response, SAP, and HR

We verified the specificity of the observed biological activity of ASON1 antisense c-fos oligonucleotide by evaluating the effects of 2 control sequences of oligonucleotide, similar to aCSF-treated animals, in the NTS of SD, WKY, SHR, and SHRSP (Table 2). Those Fos-positive neurons concentrated primarily at levels of the NTS that extended from 0.8 caudal to 0.2 rostral to the obex and exhibited similar topographic distribution patterns. Quantitative analysis also revealed no significant difference among these 4 strains of rats in the number of Fos-positive nuclei detected in the caudal NTS after sustained increase in SAP.

Twenty-four hours after microinjection into the bilateral NTS of ASON1, the Fos-LI normally induced in the NTS 120 minutes after sustained increase in SAP was markedly reduced in SD, WKY, SHR, and SHRSP (Figure 2). Such a decrease in Fos expression was localized primarily in the ventral lateral medulla in animals that received ASON1 antisense oligonucleotide treatment.

Effect of Control c-fos Oligonucleotides on BRR Response, SAP, and HR

Table 1: BRR Slope After Microinjection of aCSF (50 nL), ASON1 (50 pmol), ASON2 (50 pmol), or SON (50 pmol) into Bilateral NTS of SD, WKY, SHR, or SHRSP

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aCSF</td>
<td>5</td>
<td>0.99±0.14</td>
</tr>
<tr>
<td>ASON1</td>
<td>6</td>
<td>1.69±0.18*</td>
</tr>
<tr>
<td>ASON2</td>
<td>6</td>
<td>0.89±0.12</td>
</tr>
<tr>
<td>SON</td>
<td>5</td>
<td>1.05±0.11</td>
</tr>
<tr>
<td>WKY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aCSF</td>
<td>4</td>
<td>0.88±0.15</td>
</tr>
<tr>
<td>ASON1</td>
<td>5</td>
<td>1.61±0.17*</td>
</tr>
<tr>
<td>ASON2</td>
<td>5</td>
<td>0.72±0.13</td>
</tr>
<tr>
<td>SON</td>
<td>5</td>
<td>0.95±0.15</td>
</tr>
<tr>
<td>SHR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aCSF</td>
<td>6</td>
<td>0.47±0.13†</td>
</tr>
<tr>
<td>ASON1</td>
<td>6</td>
<td>1.36±0.13‡</td>
</tr>
<tr>
<td>ASON2</td>
<td>4</td>
<td>0.05±0.09†</td>
</tr>
<tr>
<td>SON</td>
<td>4</td>
<td>0.45±0.14†</td>
</tr>
<tr>
<td>SHRSP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aCSF</td>
<td>5</td>
<td>0.35±0.07†</td>
</tr>
<tr>
<td>ASON1</td>
<td>6</td>
<td>0.88±0.08†</td>
</tr>
<tr>
<td>ASON2</td>
<td>4</td>
<td>0.44±0.08†</td>
</tr>
<tr>
<td>SON</td>
<td>5</td>
<td>0.40±0.07†</td>
</tr>
</tbody>
</table>

Values are mean±SEM. n=number of animals per group. Results were obtained 24 hours after microinjection of aCSF or various oligonucleotides into the bilateral NTS.

*P<0.05 vs aCSF treatment within each strain.
†P<0.05 vs WKY that received the same pretreatment in the Scheffe multirange analysis.
‡P<0.05 vs SHRSP that received the same pretreatment in the Scheffe multirange analysis.

$P<0.05$ vs aCSF treatment in each strain; $§P<0.05$ vs WKY that received the same pretreatment in the Scheffe multirange analysis.

Figure 1. Maximal reflex bradycardia in absolute magnitude during the sustained stage of increase in MSAP evoked by intravenous infusion of phenylephrine in SD, WKY, SHR, or SHRSP evaluated 24 hours after microinjection into the bilateral NTS of ASON1 (50 pmol), ASON2 (50 pmol), SON (50 pmol), or aCSF (50 nL). Values are mean±SEM; n=4 to 6 animals per group. $^*P<0.05$ vs aCSF treatment in each strain; $^†P<0.05$ vs WKY that received the same pretreatment in the Scheffe multiple range analysis; $^§P<0.05$ vs SHRSP that received the same pretreatment in the Scheffe multiple range analysis.

Effect of ASON1 Antisense c-fos Oligonucleotide Treatment on Fos-LI in the NTS Induced by Sustained Increase in Blood Pressure

Sustained increase in blood pressure also induced expression of Fos-LI in the NTS of SD, WKY, SHR, and SHRSP (Figure 2). Those Fos-positive neurons concentrated primarily at levels of the NTS that extended from 0.8 caudal to 0.2 rostral to the obex and exhibited similar topographic distribution patterns. Quantitative analysis also revealed no significant difference among these 4 strains of rats in the number of Fos-positive nuclei detected in the caudal NTS after sustained increase in SAP.
found that bilateral microinjection of the sense or ASON2 antisense c-fos oligonucleotide into the NTS produced minimal effect on SAP or HR in SD, WKY, SHR, or SHRSP (Table 2).

Effect of Control c-fos Oligonucleotides on Fos-LI in the NTS Induced by Sustained Increase in Blood Pressure

Treatments with microinjection bilaterally into the caudal NTS of sense c-fos oligonucleotide resulted in no discernible effect on the number of Fos-positive cells in the NTS induced by sustained increase in SAP (Figure 3) in SD, WKY, SHR, or SHRSP. Similar observations were made in animals that received treatment with ASON2 antisense cDNA (Figure 3). Fos-LI in the NTS of Saline- and Sham-Control Animals

Intravenous infusion of saline alone resulted in much less expression of Fos-LI in the NTS (Figure 2) that was not topographically distributed. Intriguingly, quantitative analysis revealed the number of Fos-positive nuclei detected in the NTS of SHR and SHRSP animals was appreciably higher than that found in SD and WKY (Figure 2). In the sham-control groups in which rats were maintained under pentobarbital anesthesia and received surgical operation alone, Fos-LI was scarce and distributed sporadically among different levels of the NTS. Nonetheless, the average number of Fos-positive nuclei detected per section in SD (3.7 ± 0.5, n = 2) and WKY (4.2 ± 0.8, n = 2) was still discernibly less than that found in SHR (13.5 ± 2.1, n = 3) and SHRSP (12.7 ± 2.9, n = 3).

Discussion

A novel finding in the present study was the contribution of an elevated basal expression of Fos protein in the NTS to the retarded BRR sensitivity detected in SHR and SHRSP. As stated earlier in this report, it is generally accepted that hypertension is associated with an impairment of BRR.

Table 2. Basal MSAP or HR in Sham-Control SD, WKY, SHR, or SHRSP and in Animals After Microinjection of aCSF (50 nL), ASON1 (50 pmol), ASON2 (50 pmol), or SON (50 pmol) into Bilateral NTS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>MSAP, mm Hg</th>
<th>HR, bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sham 4</td>
<td></td>
<td>114±6</td>
<td>383±15</td>
</tr>
<tr>
<td>aCSF 5</td>
<td></td>
<td>116±4</td>
<td>389±18</td>
</tr>
<tr>
<td>ASON1 6</td>
<td></td>
<td>117±6</td>
<td>392±20</td>
</tr>
<tr>
<td>ASON2 6</td>
<td></td>
<td>120±4</td>
<td>401±17</td>
</tr>
<tr>
<td>SON 5</td>
<td></td>
<td>117±5</td>
<td>394±15</td>
</tr>
<tr>
<td>WKY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sham 4</td>
<td></td>
<td>107±5</td>
<td>392±9</td>
</tr>
<tr>
<td>aCSF 4</td>
<td></td>
<td>105±5</td>
<td>391±15</td>
</tr>
<tr>
<td>ASON1 5</td>
<td></td>
<td>109±6</td>
<td>395±13</td>
</tr>
<tr>
<td>ASON2 5</td>
<td></td>
<td>114±7</td>
<td>397±15</td>
</tr>
<tr>
<td>SON 4</td>
<td></td>
<td>109±6</td>
<td>396±10</td>
</tr>
<tr>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sham 4</td>
<td></td>
<td>158±4†</td>
<td>375±8</td>
</tr>
<tr>
<td>aCSF 6</td>
<td></td>
<td>153±6†</td>
<td>364±10</td>
</tr>
<tr>
<td>ASON1 6</td>
<td></td>
<td>136±4*†</td>
<td>307±16*†</td>
</tr>
<tr>
<td>ASON2 5</td>
<td></td>
<td>156±5†</td>
<td>377±11</td>
</tr>
<tr>
<td>SON 4</td>
<td></td>
<td>157±6†</td>
<td>362±16</td>
</tr>
<tr>
<td>SHRSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sham 4</td>
<td></td>
<td>162±4†</td>
<td>369±11</td>
</tr>
<tr>
<td>aCSF 5</td>
<td></td>
<td>163±8†</td>
<td>360±17</td>
</tr>
<tr>
<td>ASON1 6</td>
<td></td>
<td>143±6†</td>
<td>300±15*†</td>
</tr>
<tr>
<td>ASON2 6</td>
<td></td>
<td>157±4†</td>
<td>355±20</td>
</tr>
<tr>
<td>SON 5</td>
<td></td>
<td>163±5†</td>
<td>363±13</td>
</tr>
</tbody>
</table>

Values are mean±SEM of MSAP and HR. n = number of animals per group. Results were obtained 24 hours after microinjection of aCSF or various oligonucleotides into the bilateral NTS.

*P<0.05 vs aCSF treatment within each strain.

†P<0.05 vs WKY that received the same pretreatments in the Scheffé multiple range analysis.

![Figure 2. Distribution of Fos-LI in 8 representative rostral-caudal sections of the caudal NTS in SD, WKY, SHR, or SHRSP that received microinjection of aCSF or ASON1 (50 nmol) into the bilateral NTS 24 hours before 30-minute intravenous infusion of either saline or phenylephrine ([1BP]). Values are mean±SEM; n = 4 to 6 animals per group. *P<0.05 vs the corresponding vehicle control in each strain; †P<0.05 vs WKY that received the same pretreatment in the Scheffé multiple range analysis.](http://hyper.ahajournals.org/DownloadedFrom/html)
control of HR, which is likely to be a consequence of the rise in SAP rather than a preexisting condition. In addition, this impairment is already present during the early phase of hypertension, when chronic structural changes in the heart, vasculature, and aorta or carotid sinus are not yet fully developed. These observations imply that functional alterations in the central component of the reflex loop are the primary contributor to BRR impairment during hypertension.

By relating the enhanced induction of c-fos gene in NTS neurons to the reduction in BRR response in hypertensive rats, the present study identified that one of these functional alterations may be an elevated basal level of Fos protein in the NTS. In this regard, we reported that basal expression of Fos protein in the NTS may represent an early step in the cascade of intracellular events that leads to long-term retardation of the BRR response in SHR and SHRS.

Parallel to a recent study, we found that sustained increase in blood pressure evoked a significant increment in Fos-LI at the NTS of all strains of animals studied. These Fos-positive neurons have been demonstrated to represent second-order neurons in the BRR pathways. Detailed examination revealed that whereas there was an ~3-fold increase in the number of Fos-positive NTS neurons in normotensive rats, a 2-fold increase was detected in the hypertensive animals (Figure 2). These findings are in agreement with previous reports in which a deficit in synaptic transmission of baroreceptor afferents at the NTS has been put forth as a possible mechanism. Our present results further indicate that such a difference in the evoked response may also arise from an elevated basal Fos expression in hypertensive rats. This notion, however, is at variance with a recent report that basal Fos immunoreactivity in the NTS is similar between WKY and SHR. The difference in anesthetic agents used may account for such a discrepancy. As noted, fentanyl/midazolam used in their study depresses the constitutive increase in Fos activity in SHR. Furthermore, pentobarbital sodium reportedly exerts much less suppressive effect on Fos immunoreactivity than fentanyl/midazolam.

Several pieces of evidence validate the significantly greater number of Fos-positive cells demonstrated in the NTS of hypertensive rats under basal physiological conditions. We detected comparable quantity of Fos-positive neurons in both sham-operated controls and SHR that received an infusion of saline. We also found that the enhanced basal expression of Fos protein in the NTS could be reversed to levels comparable to that in normotensive rats by microinjection of ASON1 into the bilateral NTS. Moreover, the same treatment restored the reduced BRR response in SHR and SHRS animals to levels different from those in normotensive rats.

Two studies in which antihypertensive agents were used to treat hypertension indicate that reduction in SAP by itself may directly potentiate the function of BRR. As such, it is possible that restoration of BRR sensitivity by ASON1 in SHR and SHRS may result from the depressor effect of this antisense oligonucleotide. This possibility, however, is deemed unlikely since ASON1 treatment in SD and WKY potentiated BRR response without significantly affecting basal SAP and HR. Furthermore, bilateral application of ASON1 to the NTS elicits greater potentiation of BRR response in SHR than SHRS (Table 1) while producing similar degrees of hypotension and bradycardia (Table 2).

The method we used to evaluate the sensitivity and capacity of BRR response is based on the activation of arterial baroreceptors by an increase in SAP induced by infusion of phenylephrine. To minimize the possibility of differential activation of the baroreceptors due to differences in the vascular responsiveness among the 4 strains of animals, we infused the baroactive agent, the rate of infusion was adjusted to maintain a similar increase in SAP. Since phenylephrine does not cross the blood-brain barrier, it is unlikely that the difference in total doses of phenylephrine that normotensive or hypertensive rats received was a potential confounder that affected the BRR sensitivity. We also acknowledge that by
excluding animals that exhibited a MSAP <90 mm Hg for SD (n=2) or WKY (n=1) or <150 mm Hg for SHR (n=2) or SHRSP (n=2) in our experiments, possible confounding effects of surgical preparation and anesthesia might be overlooked. However, since there was no differential exclusion secondary to blood pressure of rats based on strain, the impact of surgical preparation and anesthesia alone on our present results was considered nominal.

In conclusion, our results suggest that an elevated basal expression of Fos protein in the NTS may contribute to the retarded BRR sensitivity detected during chronic hypertension.

Acknowledgments
This study was supported by research grant VGH87–387 from the Veterans General Hospital–Taipei and grant NSC-86–2314-B075–001-M10 from the National Science Council, Taiwan, Republic of China (to Dr J.Y.H. Chan).

References
1. Spyer M. Neural organization and control of the baroreceptor reflex.
 baroreflex sensitivity in high blood pressure. Circulation. 1969;39:
 48–54.
3. Kroner PI, West MJ, Shaw J, Uther JB. Steady-state properties of the
 baroreceptor-heart rate reflex in essential hypertension in man.
4. Head GA, Adams MA. Time course of changes in baroreflex reflex
 control of heart rate in conscious SHR and WKY; contribution of the
5. Widdop RE, Verberne AJM, Jorrott B, Louis WJ. Impaired arterial
 baroreflex sensitivity in conscious spontaneously hypertensive rats.
6. Murphy CA, McCarty R. Baroreflex control of heart rate in Dahl hyper-
 tensive (SS/Pr) and normotensive (SR/Pr) rats. J Hypertens. 1995;13:
 1145–1151.
7. Jones JV, Floras JS. Baroreflex sensitivity changes during the develop-
8. Lantelme P, Lo M, Sassard J. Decreased cardiac baroreflex sensitivity is
 not due to cardiac hypertrophy in Nω-nitro-L-arginine methyl ester-
9. Andersen MC, Kuraoka S, Brown AM. Baroreflex function and changes in
 strain sensitivity in normotensive and spontaneously hypertensive rats.
10. Minami N, Head GA. Relationship between cardiovascular hypertrophy
 and cardiac baroreflex function in spontaneously hypertensive and
11. González ER, Krieger AJ, Sapru HN. Central resetting of baroreflex in
12. Ohta H, Talman WT. Alteration of baroreceptor and chemoreceptor
 reflexes in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol
13. Körner PI. Baroreceptor resetting and other determinants of baroreflex
 45–64.
14. Morgan JH, Curran T. Stimulus-transcription coupling in neurons: role of
15. Hughes P, Draganow M. Induction of immediate-early genes and the
 control of neurotransmitter-regulated gene expression within the nervous
16. Dean C, Seagard JL. Expression of c-fos protein in the nucleus tractus
 solitarius in response to physiological activation of carotid baroreceptors.
17. Shiho CD, Chan SHH, Chan YH. Participation of Fos protein at the
 nucleus tractus solitarius in inhibitory modulation of baroreceptor reflex
18. Chan YH, Yang SM, Chan SHH. Mediation of N-methyl-D-aspartate and
 non-N-methyl-D-aspartate receptors in the expression of Fos protein at the
 nucleus tractus solitarius in response to baroreceptor activation in the rat.
19. Ciriello J. Brainstem projections of aortic baroreceptor afferent fibers in
20. Chan YH, Shiho CD, Chan SHH. Enhancement of spontaneous baroreflex
 by antisense c-fos oligonucleotide treatment in the NTS of the rat. Am J
21. Yang CCH, Ku TBJ, Chan SHH. Auto- and cross-spectral analysis of
 cardiovascular fluctuations during pentobarbital anesthesia in the rat.
 J. C-fos antisense in rostral ventral medulla reduces arterial blood
23. Hooper ML, Chiasson BJ, Robertson HA. Infusion into the brain of an
 antisense oligonucleotide to the immediate-early gene c-fos suppresses
 production of Fos and produces a behavioral effect. Neuroscience. 1994;
 63:917–924.
24. Moreira ED, Ida F, Oliveira VLL, Krieger EM. Early depression of the
 baroreceptor sensitivity during onset of hypertension. Hypertension.
25. Andersen MC, Krauhs JM, Brown AM. Relationship of aortic wall and
 baroreceptor properties during development in normotensive and sponta-
26. Xiong Y, Takayama K, Miura M. Differences in the density of barosen-
 sitive neurons in the medulla of spontaneously hypertensive and Wistar-Kyoto
27. Chan RKW, Sawchenko PE. Spatially and temporally differentiated patterns of c-fos expression in brainstem catecholaminergic cell groups
 induced by cardiovascular challenges in the rat. J Comp Neurol. 1994;
 348:433–460.
29. Takayama K, Suzuki T, Miura M. The comparison of effects of various
30. Ichikawa M, Suzuki H, Kumagai K, Ryzuaki M, Kumagai H, Jimbo M,
 Nishizawa M, Saruta T. Effects of antihypertensive agents on barore-
 ceptor function in early hypertensive rats. Hypertension. 1994;24:
 808–815.
 M, Saruta T. Baroreceptor function is restored by antihypertensive
 therapy through lowering of blood pressure in adult SHR. Clin Exp
32. Feldman PD, Maises HC. Adrenergic responses of baroreceptive cells in
 the nucleus tractus solitarii of the rat: a microiontophoretic study. Brain
Elevated Fos Expression in the Nucleus Tractus Solitarii Is Associated With Reduced Baroreflex Response in Spontaneously Hypertensive Rats

Hypertension. 1998;32:939-944
doi: 10.1161/01.HYP.32.5.939

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1998 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/32/5/939

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at: http://hyper.ahajournals.org/subscriptions/