Role of the α_{2B}-Adrenergic Receptor in the Development of Salt-Induced Hypertension

Konstantinos P. Makaritsis, Diane E. Handy, Conrado Johns, Brian Kobilka, Irene Gavras, Haralambo Gavras

Abstract—Salt sensitivity is a common trait in patients with essential hypertension and seems to have both an inherited and an acquired component (eg, is influenced by aging and renal insufficiency). Experimental evidence suggests that salt loading induces hypertension via a neurogenic mechanism mediated by the α_2-adrenergic receptors (α_2-AR). To explore the α_2-AR subtype involved in this mechanism, we studied 2 groups of mice genetically engineered to be deficient in one of the 3 α_2-AR subtype genes (either α_{2B}-AR +/- or α_{2C}-AR -/- knockout mice) compared with their wild-type counterparts. The mice (n=10 to 14 in each group) were submitted to subtotal nephrectomy and given 1% saline as drinking water for up to 35 days. Blood pressure (BP) was monitored by tail-cuff readings and confirmed at the end point by direct intra-arterial BP recording. The α_{2B}-AR–deficient mice had an attenuated BP response in this protocol (baseline 101.8±2.7 mm Hg versus end point 109.9±2.8 mm Hg), whereas the BP of their wild-type counterparts went from a baseline 101.9±2.3 mm Hg to an end point 141.4±7.1 mm Hg. The other 2 groups had BP increases of 44.6±5.17 and 46.7±7.01 mm Hg, with no difference between the mice deficient in the α_{2C}-AR gene subtype versus their wild-type counterparts. Body weight, renal remnant weight, and residual renal function were no different among groups. These data suggest that a full complement of α_{2B}-AR genes is necessary to raise BP in response to dietary salt loading, whereas complete absence of the α_{2C}-AR subtype does not preclude salt-induced BP elevation. It is unclear whether the mechanism(s) involved in this process are of central origin (inability to increase sympathetic outflow), vascular origin (inability to vasoconstrict), or renal origin (inability to retain excess salt and fluid). (Hypertension. 1999;33:14-17.)

Key Words: receptors, adrenergic, alpha \bullet mice \bullet hypertension, sodium-dependent

A common characteristic among essential hypertensive patients is excessive sensitivity to salt, with a prevalence estimated to be >50%. Although factors such as aging and diminished renal function enhance salt sensitivity, there is also evidence that this is a heritable trait that is genetically determined. In support of this notion is the familial aggregation and the higher prevalence of salt sensitivity in certain ethnic groups, eg, African Americans.

The mechanisms by which salt loading raises blood pressure (BP) are still incompletely understood. Increasing evidence in recent literature suggests that the prevailing mechanism is a neurogenic one involving an early interaction between vasopressinergic and adrenergic neurons in the central nervous system (CNS), leading to a later persistent hyperadrenergic state. A large body of experimental data suggests that the sympatic component that plays a pivotal role in this interaction is the α_2-adrenergic receptor (α_2-AR). Notably, in vitro studies in the past have also indicated that the sodium ion can affect the α_2-AR function by altering the sensitivity and responsiveness of these receptors to agonist neurotransmitters.

Because radioligands cannot discriminate between α_2-AR subtypes, the subtype involved in these salt-mediated effects could not be further dissected by pharmacological techniques. Recently, however, genetically engineered mice in which either the α_{2B}-AR or the α_{2C}-AR gene has been selectively deleted became available. The following experiments were designed to explore the role of each one of these α_2-AR subtypes in salt sensitivity by use of genetically altered mice lacking one or both copies of each of the α_2-AR subtypes in a subtotal nephrectomy and dietary salt-loading study.

Methods

Animals

Four groups of male mice aged 7 to 9 weeks and weighing 20.2 to 27.2 g were used in the present study. One group of homozygous (–/–) knockout mice for the α_{2C}-AR subtype and 1 group of heterozygous (+/–) α_{2B}-AR subtype gene knockout mice were used, along with their wild-type controls (+/+). Homozygous α_{2B}–/- gene knockout mice were not available in sufficient numbers, as they do not breed well. Heterozygous α_{2B}-AR gene knockout mice were deemed acceptable as they have been shown to have a lower level of expression of the α_{2B}-AR protein. All mice were housed in the...
animal quarters with a 12-hour light/dark cycle and were provided food (Purina, Certified Rodent Chow 5002) and distilled water ad libitum. After subtotal nephrectomy, drinking water was replaced with 1% saline. All experiments were conducted in accordance with guidelines for the care and use of animals approved by the Boston University Medical Center.

Animal Genotyping

Inactivation of each of the α2-AR genes involved insertion of the pGK.Neo.Bpa cassette. For each α2 gene, specific primers that flank the site of the pGK.Neo cassette insertion and a compatible primer specific for the pGK promoter were synthesized. Genotypes were determined from DNA isolated from tail or spleen by use of these primers in 1 polymerase chain reaction (PCR) to detect the intact gene (α2-primer pair) and the interrupted gene (α2-primer/pGK-primer pair).

To screen the α2-AR lines, MB.GF2 (ATCCTCACCCTGTGGCTCATTTG), MB.GB2 (TGGAGGCTTGGGGGTGTCCATTAG), and PGK0.1 (CAGAAAGCGAAAGGACAA-AGC) primers were used to detect the intact (365 bp) or interrupted (750 bp) α2-AR gene. To screen the α2C-AR lines, MB.GI1 (CACCTGTTGCTCCATATGTCTCGGAC), MB.GI1 (TGCCCGGACCCATTTCTGG), and PGK0.3 (CATTGTGACCTGTCCGTACACAG) were used to detect the intact (377 bp) or interrupted (540 bp) α2C-AR gene. Presence of the PGK.neo.Bpa insert was confirmed by use of the neo.F1(TGGAGAGGCTATTCGGCTATGAC) and neo.B3 (CACAAAGCAAGGACAAAGC) primers to produce a 548-bp band by PCR. Each 25-μL PCR contained 0.2 μmol/L each primer, 0.2 mmol/L each dNTP, 2 mmol/L Mg2+, 10 mmol/L Tris-HCl, pH 8.3, 50 mmol/L KCl, and 0.025 U AmpliTaq Gold (Perkin Elmer) and was incubated as follows: 95°C for 12 minutes followed by 30 cycles of 94°C for 30 seconds, 55°C for 30 seconds, 75°C for 1 minute and was incubated as follows: 95°C for 12 minutes followed by 30 cycles of 94°C for 30 seconds, 55°C for 30 seconds, 75°C for 1 minute 30 seconds followed by 75°C for 5 minutes. Bands were separated on 3% to 4% NuSieve agarose (FMC) gels.

Subtotal Nephrectomy and BP Monitoring

Mice were submitted to subtotal nephrectomy and handled as described elsewhere. In short, under anesthesia with intraperitoneal sodium pentobarbital, both poles of the left kidney were excised, leaving a small amount of residual renal tissue around the hilum and preserving the ureter and hilar vessels. After a 7- to 10-day recovery period, the right kidney was removed, leaving 20% to 25% of the total renal mass. Twenty-four hours after the second operation, the animals were placed and maintained on 1% NaCl as drinking water for a maximal period of 35 days.

Tail-cuff systolic BP (SBP) and heart rate (HR) measurements were obtained by use of a computerized tail-cuff system (BP 2000 Visitech Systems) described elsewhere.

Mice were followed up for a maximal period of 35 days or until they became hypertensive, ie, their tail-cuff SBP reached or exceeded an increase by ≥40 mm Hg from baseline. Tail-cuff systolic BP at baseline and end point for each group of mice. Open bars denote wild-type mice; closed bars, the genetically altered mice. Panel A depicts the α2B-AR–deficient mice and panel B the α2C-AR knockout mice, each with their wild-type counterparts. *P<0.01 between genetically altered mice and their wild-type counterparts.

Results

Tail-Cuff Measurements

Figure 1 summarizes mean tail-cuff BP measurements in all 4 groups of mice at end point. Panel A shows that there was no difference in baseline BP (ie, before surgery) between the heterozygous α2B+/− (n=10) and their control α2B+/+ (n=12) mice. However, an attenuated hypertensive response to subtotal nephrectomy and salt loading was observed in the heterozygous α2B+/− group, resulting in a significantly lower end point BP compared with their wild-type controls and a significantly lower ΔBP (8.1±2.44 versus 39.4±6.83 mm Hg, respectively; P=0.001). Panel B shows that α2C−/− mice (n=12) and their α2C+/− controls (n=12) were different in neither baseline BP, end point BP, or ΔBP.

Figure 2 presents mean tail-cuff HR measurements in all groups. No difference was found at baseline or end point HR between the α2B+/+ versus α2B+/− or the α2C+/+ versus α2C−/− mice. A small but significant increase in HR from baseline was observed in all groups except the α2B+/− group after subtotal nephrectomy and 1% saline (paired t test).

Intra-arterial BP Measurements

The end point direct mean arterial pressure (MAP) measurements for each group are shown in Figure 3. MAP was comparable in α2C+/+(n=10) versus α2C−/−(n=8) mice. Consistent with the end point tail-cuff BP measurements, direct MAP was significantly lower in the α2B+/−(n=8) group compared with the α2B+/+(n=10) group.
Salt Sensitivity and α_{2B}-Adrenergic Receptor

(104.3±2.71 versus 135.0±7.03 mm Hg, respectively; $P=0.002$). Comparison of end point tail-cuff SBP measurements with direct MAPs by regression analysis showed a close correlation between the 2 readings for all mice studied ($r=0.746$, $P<0.001$, $n=36$).

Other Parameters

Table 1 shows no differences between genetically altered mice and their controls in regard to body weight at baseline and end point or ratio of remnant kidney weight to body weight at end point and no differences in plasma creatinine levels, indicating that the residual renal function after subtotal nephrectomy was similar in all groups. Mean plasma creatinine levels were within the normal range in all 4 groups. Hypertension, as defined in the Methods section, developed within 2 weeks on average in the $\alpha_{2B}+/+$ and $\alpha_{2C}-/-$ mice and in ≈4 weeks in the $\alpha_{2B}+/+$. All $\alpha_{2B}+/-$ mice were maintained for 35 days, except 2 mice that died a few days earlier without appreciable change in BP.

Discussion

Subtotal nephrectomy is a long-accepted experimental procedure used over the years to accentuate salt-induced hypertension equivalent to that accompanying human chronic renal failure. Previous studies from our laboratory and others have established that this hypertension is associated with indices of sympathetic overactivity that seems to be mediated by altered α_{2}-AR function in CNS structures. The present experiments suggest that the α_{2B}-AR subtype plays a crucial role in this situation, because mice lacking a full complement of the α_{2B}-AR gene were unable to raise their BP in response to chronic salt loading aided by subtotal nephrectomy. Although missing only 1 copy of the α_{2B}-AR gene, these animals have been shown in the past to be deficient in α_{2B}-AR protein levels. The data do not permit conclusions as to the mechanism(s) by which NaCl may affect α_{2B}-AR, ie, whether it causes the gene itself or some regulatory protein to respond to chronic salt loading aided by subtotal nephrectomy. In contrast, subtotally nephrectomized mice with complete lack of the α_{2C}-AR gene developed salt-induced hypertension to the same extent as their wild-type counterparts.

In a number of recent publications, it was suggested that the α_{2A}-AR subtype, which is abundantly distributed throughout the CNS and highly concentrated in the brain stem, is directly involved in regulating sympathetic outflow on the contrary, the α_{2B}-AR is restricted only in a limited area of the CNS, namely the thalamus and the nucleus tractus solitarii area of the brain stem, but is abundant in the vascular smooth muscle cells of the arterial wall and mostly responsible for a peripheral vasoconstrictive action, whereas the α_{2A}-AR have an "elusive, mysterious character" with no clearly defined function so far. A separate study of α_{2A}-AR
knockout mice versus their wild counterparts will be reported elsewhere (B.K. Kobilka, unpublished data).

The fact that mice lacking 1 copy of the \(\alpha_{2A}\)-AR gene are unable to develop salt-induced hypertension could have several potential interpretations: An obvious one is that lack of functional peripheral \(\alpha_{2A}\)-AR on the vascular wall diminishes the capacity of resistance arteries to constrict in response to adrenergic stimuli. This is unlikely, however, because catecholamines induce vasoconstriction mainly via stimulation of the \(\alpha_{1}\)-AR, which constitute the majority of the vascular wall \(\alpha\)-AR.\(^{19}\) For this reason, selective \(\alpha_{1}\)-AR antagonists like prazosin, terazosin, etc. have a major and consistent hypotensive effect, whereas \(\alpha_{2A}\)-AR antagonists (eg, yohimbine) cause minimal vasodilation overshadowed by a centrally mediated hypertensive action.

A second possibility is that lack of adequately functional renal \(\alpha_{2A}\)-AR precluded reabsorption of sodium. The \(\alpha_{2A}\)-AR are the numerically predominant AR type in the kidney,\(^{20}\) and in rats they belong mostly to the \(\alpha_{2B}\)-AR subtype.\(^{21}\) Several investigators have proposed that increased sodium reabsorption leading to salt-induced hypertension is a function of renal \(\alpha_{2A}\)-AR.\(^{22-24}\) Therefore, it is possible that the \(\alpha_{2A}\)-AR–deficient animals were unable to retain sodium and, hence, never did attain a salt-loaded state. This possibility cannot be excluded without metabolic studies to calculate salt intake and output of each subgroup.

A third potential explanation is that lack of functional central \(\alpha_{2A}\)-AR may be responsible for inability to respond to salt loading with the expected increase in sympathetic outflow. Even though this thought is reported to be mainly an \(\alpha_{2A}\)-AR–mediated effect,\(^{16}\) it is possible that the strategically located \(\alpha_{2A}\)-AR in the thalamus and brain stem\(^{17}\) may play a modulating role on the \(\alpha_{2\alpha}\)-AR responses. In the absence of some physiological indicator of sympathetic activity, such as circulating catecholamine levels or nerve conduction studies, this possibility cannot be confirmed or refuted. Nevertheless, the lack of \(\alpha_{2A}\)-AR–mediated vasoconstriction would suggest absence of excessive catecholaminergic stimulation of CNS origin.

It is tempting to speculate on the potential significance of this finding in terms of genetic predisposition to salt sensitivity and essential hypertension. Although results from genetic epidemiological studies have so far been inconsistent, there have been suggestions that hypertensive African Americans may have a higher frequency of \(\alpha_{2A}\)-AR gene polymorphisms.\(^{25-26}\) Further, aging was associated with diminished affinity status of \(\alpha_{2}\)-AR in elderly black normotensive subjects compared with their white counterparts or to age- and race-matched hypertensive subjects.\(^{27}\) These intriguing bits of information make it worth exploring whether genetic differences in \(\alpha_{2A}\)-AR subtype numbers, structure, or function or alterations due to aging and other factors are associated with differences in salt sensitivity in humans.

Acknowledgments

This work was supported by the Hypertension SCOR Grant #1P50HL 55001.

References

26. Svetkey LP, Timmons PZ, Emovon O, Anderson NB, Preis L, Chen YT. Association of hypertension with \(\beta\) and \(\alpha_{2\gamma\alpha}\)-adrenoceptor genotype. Hypertension. 1996;27:1210–1215.

Role of the α_2B-Adrenergic Receptor in the Development of Salt-Induced Hypertension

Konstantinos P. Makaritsis, Diane E. Handy, Conrado Johns, Brian Kobilka, Irene Gavras and Haralambos Gavras

Hypertension. 1999;33:14-17
doi: 10.1161/01.HYP.33.1.14

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://hyper.ahajournals.org/content/33/1/14

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Hypertension_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Hypertension_ is online at:
http://hyper.ahajournals.org//subscriptions/