Elevated Skeletal Muscle Blood Flow in Noncomplicated Type 1 Diabetes Mellitus
Role of Nitric Oxide and Sympathetic Tone

Gerald Vervoort, Jack F. Wetzels, Jos A. Lutterman, Laurus G. van Doorn, Jo H. Berden, Paul Smits

Abstract—Capillary hyperperfusion precedes and contributes to the occurrence of diabetic microangiopathy. Vascular tone is regulated by the balance of vasodilating and vasoconstricting factors, of which nitric oxide (NO: an endothelium dependent vasodilator) and norepinephrine (NE: a potent vasoconstrictor), respectively, are of primary importance. To investigate the role of these factors in hyperperfusion, we measured forearm blood flow (FBF) in 50 patients with noncomplicated type 1 diabetes (DP) and 50 healthy control subjects (CS) under baseline conditions and during intrabrachial infusion of Nω-nitroarginine (L-NMMA), an endothelium-dependent vasoconstrictor, and acetylcholine (ACh), an endothelium-dependent vasodilator. Furthermore, we determined arterial plasma NE concentration at baseline and then determined α-adrenergic receptor sensitivity by measuring FBF response to intra-arterially infused NE. We found that basal FBF was increased in DP (2.9 ± 0.1 versus 2.0 ± 0.1 mL·min⁻¹·dL⁻¹ in CS; P < 0.01). L-NMMA caused a similar vasoconstriction in both groups (28.5 ± 1.7% in DP versus 31.2 ± 2.2% in CS; P = NS). Maximum blood flow during infusion of ACh was not different (23.3 ± 1.9 mL·min⁻¹·dL⁻¹ in DP versus 20.1 ± 1.6 in CS). Arterial plasma NE concentrations were significantly decreased in DP (0.57 ± 0.03 versus 0.81 ± 0.05 nmol/L in CS; P < 0.01). The vasoconstrictive effect of NE was increased in DP (slope log dose-response curve, 31.3 ± 1.5 versus 24.3 ± 1.8 in CS; P < 0.01). We conclude that basal FBF is increased in noncomplicated type 1 diabetes. We found no evidence of a disturbance of basal or stimulated NO production. Arterial plasma NE concentrations are decreased in noncomplicated type 1 diabetes. This may explain the vasodilatation at baseline and the increased vascular response to intra-arterially infused NE. (Hypertension. 1999;34:1080-1085.)

Key Words: endothelium • L-NMMA • norepinephrine • acetylcholine • diabetes • blood flow

Considerable evidence shows that the onset of diabetic microangiopathy is preceded by a state of generalized capillary hyperperfusion.1,2 These observations have led to the hypothesis that an increase in capillary flow or pressure contributes to the development of endothelial dysfunction and microvascular complications. Vascular tone is determined by a balance between vasoconstricting and vasodilating factors. Nitric oxide (NO) is an important endogenous vasodilator and a candidate for mediation of increases in blood flow observed in early diabetes.3 Vasoconstriction is largely dependent on sympathetic adrenergic activity. In experimental and human diabetes, changes in sympathetic activity have been found.4–6

Thus, in diabetic patients (DP), the decrease in vascular tone and the ensuing increase in skeletal muscle blood flow may result either from an increased release of NO from the vascular endothelium or from a decrease in sympathetic nervous system activity.

This hypothesis was addressed by use of the perfused forearm technique to quantify baseline and stimulated NO release and α-adrenergic responsiveness. Furthermore, as a measure of sympathetic nervous system activity, we have quantified arterial norepinephrine (NE) levels (α-adrenergic tone).

Methods

Study Population

After the study was approved by the local ethics committee, 50 patients with type 1 diabetes (DP) and 50 age- and sex-matched healthy controls (CS) gave informed consent. All procedures followed were in accordance with institutional guidelines. Type 1 diabetes was defined as an acute onset before the age of 40 years and insulin treatment <1 year after diagnosis. DP fulfilled the following criteria: diabetes duration, 5 to 12 years; age, 18 to 40 years; blood pressure (BP), <140/90 mm Hg; no antihypertensive medication; no clinical evidence of macrovascular disease; and no signs of microvascular disease, such as microalbuminuria or retinopathy (except for simple background retinopathy). Persistent normoalbuminuria was defined as urinary albumin excretion <20 µg/min in 2 timed, overnight urine samples. DP were recruited from the outpatient diabetic clinics of the University Hospital Nijmegen and TweeSteden Hospital Tilburg. CS were recruited from the local population and were screened for the absence of hypertension and cardiovascular and renal disease. Medication was not allowed except for oral contraceptives, which do not influence the parameters measured.
Study Protocols
Participants attended the clinic after an overnight fast. DP received their neutral protamine Hagedorn insulin dose the evening before the study but did not receive their usual fast-acting morning insulin. Glucose was measured before and during the study but was not corrected by insulin, to avoid confounding by the vasodilator effect of insulin. If hypoglycemia occurred (glucose <3.0 mmol/L), the test was canceled. In addition to glucose, free fatty acids (FFA) were measured. All participants were instructed to abstain from alcohol and caffeine for 24 hours and to refrain from smoking for 12 hours before the study.

The study was performed between 8 AM and 12 AM in a temperature-controlled room (23°C). Dosages of all drugs were calculated per deciliter of forearm volume, which was measured by water displacement. Forearm blood flow (FBF), intra-arterial BP, and heart rate were measured after cannulation of the left brachial artery as described before. After an equilibration period of 45 minutes with subjects supine, arterial blood samples were collected for determination of plasma NE and epinephrine, and intra-arterial BP and heart rate were registered. Thereafter, the experiment started with the measurement of baseline FBF during placebo infusion (NaCl 0.9%). After placebo infusion, FBF response to intra-arterial infusion of Nω-monomethyl-L-arginine (L-NMMA) was recorded. Three dosages of L-NMMA were given (0.05, 0.10, and 0.20 mg·min⁻¹·dL⁻¹; 5 minutes per dose) to produce a dose-response curve. Baseline FBF recordings were performed again ≥60 minutes after infusion of L-NMMA, after FBF had returned to baseline values. Then, FBF response to graded intra-arterial infusion of NE (10, 20, and 40 ng·min⁻¹·dL⁻¹; 5 minutes per dose) was registered. Thereafter, FBF returned to baseline values within 30 minutes. After baseline FBF measurements were taken, FBF response to increasing dosages of ACh (0.5, 2.0, and 8.0 mg·min⁻¹·dL⁻¹; 5 minutes per dose) was recorded. By ≥15 minutes after the infusion of ACh was stopped, forearm ischemia was achieved by inflating a cuff around the upper arm up to 200 mm Hg for 13 minutes; dynamic exercise (20 to 30 hand contractions) was performed during the last minute of ischemia. Flow was measured at 20-second intervals for the first 2 minutes after ischemic release to determine maximal FBF. This postocclusive reactive hyperemia test (PORH) was used to exclude structural abnormalities and to assess maximal vasodilator capacity.

After the final dose of L-NMMA, 2 to 4 mCi 125I-albumin (code IM 17 P, Amersham Intl) was given as an intravenous bolus injection. During 60 minutes after injection, 7 blood samples were collected at regular intervals. Plasma radioactivity was measured in each sample with a scintillation detector (automatic γ-counter, 1480 Wizard 3; Wallac). Plasma volume was determined from retrolocation of the disappearance curve to time zero and from the injected volume of the tracer. Calculations were made only when correlation coefficient between time points for blood sampling and the corresponding values of ln (plasma radioactivity) were >0.85. In a pilot study, we found no influence of local arterial infusion of L-NMMA on the clearance of 125I-albumin.

After completion of the study, we selected 24 DP with arterial plasma NE concentrations in the highest (n=12) or lowest (n=12) quartile. In these DP, cardiovascular autonomic function was assessed from BP response to sustained handgrip and from heart rate variation during controlled forced breathing, standing up, and Valsalva maneuver. These tests were performed to find whether the observed reduction in plasma NE in DP resulted from subclinical autonomic neuropathy. Findings were compared with reference values from healthy subjects matched for age and gender.

In all participants, 24-hour ambulatory BP was measured with an automatic BP device (Profilomat, Disetronic Medical Systems AG) on a normal working day. Raw data were manually checked and inappropriate readings removed. BP readings between 10 AM and 11 PM were averaged as “daytime” BP and between 1 and 7 AM as “nighttime” BP.

Drugs
Drugs were dissolved in saline (NaCl 0.9%), at the start of the study. L-NMMA was purchased from Chinalfa A.G.; NE from Centrafarm Services B.V.; and ACh from Dispensa A.G.

Biochemical Measurements
Plasma arterial NE and epinephrine were determined by an accurate assay. Plasma glucose was measured using a standard glucose oxidation method. During the study, glucose was measured hourly in arterial blood using Glucocard (Menarini Diagnostics). Insulin was measured with an insulin-specific double-antibody radioimmunoassay (interassay coefficient of variation, 6.2%). Hemoglobin A1c (HbA1c) was measured using a high-performance liquid chromatographic technique (Bio-Rad Diamat), with reference values of 4.8% to 6.2%. FFA were measured using an enzymatic colorimetric method (ACS-ACOD method, Wako Chemicals).

Statistical Analysis and Data Report
FBF is expressed as milliliters per minute per deciliter of forearm tissue. Because BP was not significantly affected by infusion of either drug (see Results), changes in FBF were assumed to represent changes in vascular tone. Therefore, forearm vascular resistance was not calculated.

FBF measurements obtained during the last 3 minutes of each 5-minute period of placebo or drug infusion were averaged. During these 3 minutes, FBF showed a steady state for all infusion rates. For the vasodilator response to forearm ischemia, the maximal FBF after deflation of the cuff was used. To quantify the overall response to L-NMMA and NE, we calculated absolute and percentage changes by using the preceding baseline recordings. To overcome differences in baseline flow and to correct for systemic influences, responses are also described as FBF (left/right) ratio (FBFleft/experimental arm)/(FBFright/control arm).

Because we used fixed dosages based on forearm volume, (fictive) concentration of the drug in the forearm will depend on FBF. Because FBF varies considerably between individuals, dose-response curves corrected for flow were calculated; the standard dose of the infused drug was divided by the resulting FBF in steady state. The responses to ACh were expressed as the ratio of FBF during infusion of ACh and individual maximal FBF after ischemia.

To analyze differences in relative change in FBF between groups and related to concentration, a generalized mixed linear model was postulated with group, concentration, and their interaction as fixed factors and related to concentration, a generalized mixed linear model was postulated. Correlations were calculated using the Pearson test or Mann-Whitney U test when appropriate. We evaluated differences in vascular responses to various drugs and dosages between groups by use of repeated-measures ANOVA.

To analyze differences in relative change in FBF between groups and related to concentration, a generalized mixed linear model was postulated with group, concentration, and their interaction as fixed factors and DP or CS as random factor. If residuals appeared to be nongaussian distributed, the same analysis was done on ranks of observations. Computations were done using Proc Mixed (SAS) and the SPSS software package. Correlations were calculated using the Pearson r test for normally distributed data and Spearman test for nongaussian data. Results are expressed as mean±SE unless otherwise indicated. Differences were considered statistically significant at P<0.05.

Results
Baseline Data
Baseline characteristics of DP and CS are summarized in Table 1. Mean HbA1c was 8.4±0.2% in DP. Insulin concentration was significantly increased in DP. Baseline glucose in DP averaged 11.4±0.6 mmol/L (range, 4 to 22 mmol/L) and remained stable throughout the experiment. FFA were slightly but not significantly increased in DP. Baseline FBF was significantly higher in DP (2.9±0.1 versus 2.0±0.1 mL·min⁻¹·dL⁻¹ in DS, Table 2, P<0.01).

Baseline and Stimulated NO Release
L-NMMA produced a dose-dependent vasoconstriction (P<0.001 in both groups, Table 2). Maximal percentage change in absolute FBF was 28.5±1.5% in DP and 31.2±2.2% in CS (P=NS). L-NMMA (0.05, 0.10, and 0.20...
mg · min⁻¹ · dL⁻¹) reduced the FBF ratio in DP by 12.5±1.2%, 21.9±1.4%, and 29.8±1.4%, respectively, and in CS by 14.0±2.0%, 22.0±2.1%, and 29.9±2.1% (P=NS between groups). A dose-response curve corrected for flow (concentration-response curve) is shown in Figure 1. The concentration-response curves were exactly the same in both groups. The slopes of the linear relationship of the logarithm of concentration and vasoconstricting response to L-NMMA were not different between groups (27.8±1.5 in DP and 26.2±1.7 in CS; P=NS).

ACh (0.5, 2.0, and 8.0 mg · min⁻¹ · dL⁻¹) produced a dose-dependent increase in FBF (P<0.001, Table 2). The maximal FBF during the highest ACh dose was not different between the groups (23.3±1.8 in DP versus 20.1±1.6 mL · min⁻¹ · dL⁻¹ in CS). After 13 minutes of forearm ischemia, mean maximal FBF averaged 43.5±1.5 mL · min⁻¹ · dL⁻¹ in DP and was similar to the corresponding maximal FBF of 41.0±1.7 mL · min⁻¹ · dL⁻¹ in CS (P=NS). In DP, the ratio of FBF during ACh infusion and the maximal FBF (PORH) increased by 21.1±1.7%, 33.7±2.8%, and 52.8±3.7% for dosages of 0.5, 2.0, and 8.0 mg · min⁻¹ · dL⁻¹, respectively. ACh increased this ratio in CS by 13.9±1.2%, 26.8±2.4%, and 50.4±3.4%, respectively (Figure 2; P=NS between groups).

TABLE 1. Characteristics of DP and CS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M/F), n</td>
<td>25/25</td>
<td>25/25</td>
</tr>
<tr>
<td>Age, y</td>
<td>28.4±1.0</td>
<td>28.3±0.9</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>23.2±0.4</td>
<td>22.7±0.5</td>
</tr>
<tr>
<td>Nonsmoker/smoker, n</td>
<td>31/19</td>
<td>35/15</td>
</tr>
<tr>
<td>Arterial systolic/diastolic BP, mm Hg</td>
<td>116±1/62±1</td>
<td>116±1/63±1</td>
</tr>
<tr>
<td>Daytime systolic/diastolic BP, mm Hg</td>
<td>121.4±1.9/64.3±1.8</td>
<td>121.4±2.1/64.0±1.7</td>
</tr>
<tr>
<td>Nighttime systolic/diastolic BP, mm Hg</td>
<td>102.8±1.7/69.4±1.5</td>
<td>104.0±1.9/68.9±1.5</td>
</tr>
<tr>
<td>Daytime/nighttime heart rate, bpm</td>
<td>80.9±2.5/62.5±1.7</td>
<td>77.7±2.5/63.8±1.8</td>
</tr>
<tr>
<td>Plasma volume, mL/1.73 m²</td>
<td>2808±59</td>
<td>2829±62</td>
</tr>
<tr>
<td>Ankle/brachial index</td>
<td>1.09±0.01</td>
<td>1.09±0.01</td>
</tr>
<tr>
<td>Forearm volume, mL</td>
<td>947±21</td>
<td>934±25</td>
</tr>
<tr>
<td>Waist-to-hip ratio</td>
<td>0.90±0.01</td>
<td>0.89±0.01</td>
</tr>
<tr>
<td>Duration of diabetes, y</td>
<td>8.3±0.8</td>
<td>...</td>
</tr>
<tr>
<td>Glucose, mmol/L</td>
<td>11.4±0.6*</td>
<td>5.1±0.1</td>
</tr>
<tr>
<td>HbA₁c, %</td>
<td>8.4±0.2*</td>
<td>5.0±0.1</td>
</tr>
<tr>
<td>FFA, mmol/L</td>
<td>0.46±0.03</td>
<td>0.39±0.02</td>
</tr>
<tr>
<td>Total cholesterol, mmol/L</td>
<td>4.1±0.1</td>
<td>4.3±0.2</td>
</tr>
<tr>
<td>Triglycerides, mmol/L</td>
<td>0.9±0.1</td>
<td>1.0±0.1</td>
</tr>
<tr>
<td>HDL-cholesterol, mmol/L</td>
<td>1.3±0.0</td>
<td>1.2±0.0</td>
</tr>
<tr>
<td>LDL-cholesterol, mmol/L</td>
<td>2.4±0.1</td>
<td>2.6±0.2</td>
</tr>
<tr>
<td>Insulin, pmol/L</td>
<td>121±12*</td>
<td>46±3</td>
</tr>
</tbody>
</table>

Data are expressed as mean±SE.

*P<0.01 for diabetic patients vs control subjects.

TABLE 2. Baseline FBF and Its Response to 3 Different Dosages of Vasoactive Drugs in Healthy CS and Type 1 DP

<table>
<thead>
<tr>
<th>Vasoactive Drug</th>
<th>Placebo</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-NMMA CS</td>
<td>2.0±0.1</td>
<td>1.7±0.1</td>
<td>1.5±0.1</td>
<td>1.4±0.1</td>
</tr>
<tr>
<td>Type 1 DP</td>
<td>2.9±0.1</td>
<td>2.5±0.1</td>
<td>2.2±0.1</td>
<td>2.0±0.1</td>
</tr>
<tr>
<td>Acetylcholine CS</td>
<td>2.0±0.1</td>
<td>5.5±0.5</td>
<td>10.7±1.0</td>
<td>20.1±1.6</td>
</tr>
<tr>
<td>Type 1 DP</td>
<td>3.0±0.2</td>
<td>9.0±0.7</td>
<td>14.6±1.2</td>
<td>23.3±1.8</td>
</tr>
<tr>
<td>Norepinephrine CS</td>
<td>1.9±0.1</td>
<td>1.4±0.1</td>
<td>1.3±0.1</td>
<td>1.2±0.1</td>
</tr>
<tr>
<td>Type 1 DP</td>
<td>2.7±0.1</td>
<td>1.9±0.1</td>
<td>1.7±0.1</td>
<td>1.4±0.1</td>
</tr>
</tbody>
</table>

FBF is measured in mL · min⁻¹ · dL⁻¹. For discussion of the data, see Results.

Figure 1. Concentration-response curve of intra-arterial infusion of L-NMMA in type 1 DP (■) and healthy CS (□). Percentage changes in absolute FBF are shown on the y axis, whereas the dosage of L-NMMA (0.05, 0.10, and 0.20 mg · min⁻¹ · dL⁻¹) divided by FBF (mL · min⁻¹ · dL⁻¹) in steady state is shown on the x axis (P=NS).
Concentration-response curve of intra-arterial infusion of NE (Figure 3). The mean arterial plasma NE concentration was 0.57 ± 0.03 nmol/L in DP and 0.81 ± 0.05 in CS (P < 0.01). Plasma epinephrine concentrations were not significantly different between the groups (0.19 ± 0.02 nmol/L in DP and 0.21 ± 0.02 in CS). Intra-arterially infused NE produced dose-dependent vasoconstriction (Table 2; P < 0.001 in both groups). Maximum percent change of absolute FBF was 45.8 ± 2.4% in DP and 39.8 ± 3.0% in CS (P = 0.09). NE (10, 20, and 40 ng · min⁻¹ · dL⁻¹) reduced FBF ratio in DP by 29.7 ± 2.0%, 36.8 ± 2.0%, and 46.9 ± 2.2%, respectively, and in CS by 21.8 ± 2.9%, 30.5 ± 3.1%, and 40.1 ± 3.2%, respectively (P = NS between groups). A concentration-response curve for NE is shown in Figure 3. Analysis of the generalized mixed linear model showed a dose-response relationship in both groups and showed that the slope of the linear logarithmic relationship is steeper in DP (31.3 ± 1.5 versus 24.3 ± 1.8 in CS, P < 0.01).

During the various procedures, no significant changes to contralateral FBF occurred. No significant changes were noted in BP after infusion of L-NMMA, ACh, or NE in either group (data not shown). Standardized cardiovascular autonomic tests disclosed no differences between DP in the highest or lowest quartile of NE concentration or with values of age- and sex-matched controls (data not shown).

In DP, no significant correlation existed between the response to L-NMMA, ACh, or NE and the duration of diabetes; HbA₁c; levels of total cholesterol, triglycerides, and FFA; concentrations of insulin, glucose, and plasma NE; and baseline flow (data not shown). Weak correlation existed between basal FBF and blood glucose level (Spearman, r = 0.40; Figure 4) and between basal FBF and FFA levels (Spearman, r = 0.29; Figure 4). No correlations were observed between basal NE and HbA₁c, plasma NE concentration, total cholesterol, insulin concentration, or diabetes duration (data not shown). In view of the observed correlations between basal FBF, blood glucose level, and FFA and the possible confounding effect of elevated glucose levels, we performed a subanalysis in 11 DP with glucose values during the study of 4 to 7 mmol/L (normoglycemic; mean glucose, 5.9 ± 0.7 mmol/L) and 11 DP with glucose values of 14 to 22 mmol/L (hyperglycemic; mean glucose, 17.3 ± 2.6 mmol/L) (Table 3). FFA and basal FBF were significantly increased in the hyperglycemic DP compared with the normoglycemic group. However, FBF was still increased in the normoglycemic DP compared with CS. The responses to L-NMMA, ACh, and NE were comparable between both diabetic groups. In the normoglycemic DP, plasma NE was significantly reduced compared with CS (0.51 ± 0.16 versus 0.81 ± 0.37 nmol/L, P < 0.01).

Discussion

In patients with type 1 diabetes, a generalized increase in blood flow is found. Such an increase in blood flow has been suggested to be instrumental in the development of diabetic microangiopathy. We have studied several parameters of vascular control in type 1 DP without evidence of complications. Specifically, all DP had normoalbuminuria, normal BP, and normal vascular response to ischemia and ACh, which are indicators of vascular injury.

Our study confirms that skeletal muscle blood flow is increased in the early phase of diabetes. Some investigators have found no significant difference in baseline flow in DP; however, the number of patients in these studies was small.
TABLE 3. Subanalysis of Normoglycemic and Hyperglycemic DP

<table>
<thead>
<tr>
<th>Variables</th>
<th>Controls</th>
<th>Normoglycemic</th>
<th>Hyperglycemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose, mmol/L</td>
<td>5.1±0.4</td>
<td>5.9±0.7</td>
<td>17.3±2.6</td>
</tr>
<tr>
<td>FFA, mmol/L</td>
<td>0.39±0.14</td>
<td>0.34±0.20</td>
<td>0.67±0.35⁵</td>
</tr>
<tr>
<td>Insulin, pmol/L</td>
<td>45.6±19.2</td>
<td>169.8±117.6</td>
<td>116.4±65.4</td>
</tr>
<tr>
<td>FBF, mL·min⁻¹·dL⁻¹</td>
<td>2.0±0.6</td>
<td>2.4±0.7†</td>
<td>3.4±1.3‡</td>
</tr>
<tr>
<td>HbA1c, %</td>
<td>4.9±0.4</td>
<td>7.9±1.2</td>
<td>9.3±1.7</td>
</tr>
<tr>
<td>NE, nmol/L</td>
<td>6.8±0.37</td>
<td>0.51±0.16</td>
<td>0.62±0.25</td>
</tr>
<tr>
<td>NE % vasoconstriction</td>
<td>25.9/30.3/39.8</td>
<td>27.1/34.1/43.5</td>
<td>26.8/36.2/45.1</td>
</tr>
<tr>
<td>L-NMMA % vasoconstriction</td>
<td>17.4/25.4/31.2</td>
<td>11.8/23.2/29.3</td>
<td>12.2/21.6/27.6</td>
</tr>
<tr>
<td>ACh/PORH</td>
<td>50.4±24.6</td>
<td>41.9±20.5</td>
<td>66.5±23.8</td>
</tr>
</tbody>
</table>

Data are expressed as mean±SD.

*P<0.05 vs normoglycemic DP and CS; †P<0.05 vs CS; ‡P<0.01 vs normoglycemic DP and CS.

Normoglycemic DP had glucose levels of 4 to 7 mmol/L; hyperglycemic, 14 to 22 mmol/L. NE % vasoconstriction indicates percentage reduction in FBF during intra-arterial infusion of norepinephrine in a dosage of 10, 20, and 40 ng·min⁻¹·dL⁻¹, respectively; L-NMMA % vasoconstriction, percentage reduction in FBF during intra-arterial infusion of L-NMMA in a dosage of 0.05, 0.1, and 0.2 mg·min⁻¹·dL⁻¹, respectively; ACh/PORH, ratio of FBF during intra-arterial infusion of acetylcholine (ACh, 8.0 mg·min⁻¹·dL⁻¹) and maximal FBF during the PORH.

Furthermore, glucose was controlled by euglycemic clamping (see discussion below).

We found no evidence for a role of the endothelium-derived vasodilator NO in DP, because the vasoconstrictive response to L-NMMA was similar in DP and CS. In experimental diabetes, basal endogenous NO accounts for the increase in renal perfusion, because increases in renal blood flow can be blocked by inhibitors of constitutive NO synthesis.⁴ From in vivo animal experiments, no data are available on the role of NO in hyperperfusion of other vascular beds. To our knowledge, studies on the role of NO in glomerular hyperfiltration in humans have not been published. Therefore, our conclusions may be applicable only to the skeletal muscle vascular bed. Several investigators have determined vascular response to L-NMMA in the human forearm. In these studies, either no difference or a decreased vasoconstrictive response was observed for L-NMMA in noncomplicated DP.⁵,⁶ Of note, the study by Calver et al.⁵ the vasoconstrictive responses of L-NMMA were corrected for by the vasoconstrictive response to NE.

Vasodilating factors other than NO, such as prostacyclin and endothelium-derived hyperpolarizing factor, could contribute to the increase in blood flow. However, few data point toward an increased release of prostacyclin or endothelium-derived hyperpolarizing factor by the endothelium in diabetes.

Therefore, we have focused on the sympathetic nerve system, because the adrenergic activity is a major determinant of vascular tone. Dysfunction of the autonomic nervous system is a common finding in experimental diabetes.⁴ Also, a decrease in sympathetic activity has been shown in the early phase of human diabetes.⁵,⁶ In the present study, arterial NE concentration, which reflects whole-body sympathetic tone, was significantly decreased in patients with noncomplicated type 1 diabetes. Our findings may seem to contradict results reported by others, who reported normal or even increased NE levels in normoalbuminuric type 1 DP.⁷,⁸ However, in these studies, NE concentrations were measured in venous blood samples. Arterial NE concentration is far more consistent for indication of total-body sympathetic activity than venous NE, which is known to be influenced by local (mainly skeletal muscle) nerve activity.⁹

We also found an increased responsiveness to infused NE. Results of animal and human data have been equivocal.⁴,⁵,⁶,¹⁰ The increase in vascular responsiveness of NE seen in our DP is compatible with receptor upregulation expected to occur in situations of sympathetic nerve denervation and low NE levels. On the basis of our findings, we suggest that reduced sympathetic drive may, at least in part, be responsible for the reduced peripheral vascular resistance seen in noncomplicated type 1 diabetes.

A decrease in other endogenous vasoconstrictive mediators could also be involved. Some investigators have found a decrease in plasma endothelin and angiotensin levels in early diabetes.⁶,¹¹ An altered sensitivity to both mediators, however, has not unequivocally been proven yet in humans in vivo.

One could speculate as to potential mechanisms that underlie the decrease in sympathetic drive. Hyperglycemia and hyperinsulinemia increase tubular sodium reabsorption, which causes extracellular volume expansion.¹² An increase in BP or cardiac filling pressure will lead to decreased sympathetic tone and reduced peripheral resistance. However, plasma volume and BP were similar in noncomplicated DP and CS. Furthermore, we found no relation between glucose values or HbA₁c and plasma NE concentration and vascular response to NE. Finally, one could speculate that autonomic diabetic neuropathy is responsible for the decrease in sympathetic drive. However, cardiovascular autonomic responses were not different between DP with plasma NE concentrations in the lowest and highest quartiles, nor did they differ from those of CS. The night/day ratios of BP and heart rate were the same in those of CS. Nevertheless, we cannot rule out that more advanced techniques (ie, microneurography) will reveal early autonomic dysfunction in these patients.

One important aspect concerns the role of hyperglycemia per se. A main issue when studying DP is the selection of the most appropriate experimental conditions. The study of DP in conditions of normoglycemia and normoinsulinemia is difficult. The only way to achieve this is to infuse low doses of insulin into the portal vein, a method clearly not available for routine use. Therefore, investigators are left with 2 options, either to study DP under euglycemic (hyperinsulinemic) conditions or to study DP in a fasting state with insulin levels as low as possible. In the latter case, glucose levels will be moderately increased, as is often the case in normal daily life of these patients. We think that either condition is relevant for the study of patients with diabetes.

For the present study, we chose to withhold the morning insulin dose to obtain low insulin levels to overcome the well-documented effects of insulin on vascular tone (vasodilation) and sympathetic activity (stimulation).⁷,⁹ As a result, glucose levels in our DP were slightly to moderately elevated. Prolonged local hyperglycemia has not been shown to affect FBF in healthy humans.¹³ In contrast, hyperglycemia has been
reported to cause increases in retinal and renal blood flow.9,19
Furthermore, basal blood flow in DP has been claimed to have
been normalized during euglycemic clamp.23 However, in the
latter study, CS were not subjected to euglycemic clamp.23
Besides, infusion of insulin has been demonstrated to increase
sympathetic activity and NE levels.9 In view of the increased
vasoconstrictive response to NE in DP, a euglycemic clamp is
likely to lead to “pseudonormalization” of FBF. In this way, the
procedure itself could cause a difference in NE vasoreactivity
between DP and CS to be missed.

In the present study, we found a weak correlation between
fasting glucose and FFA on one hand and basal FBF on the
other. An increase in blood glucose or metabolic factors
related to elevated glucose levels (eg, an increase in FFA)
may be, in part, responsible for the higher FBF in the
subgroup of hyperglycemic DP. However, subanalysis of DP
with normal fasting glucose levels (between 4 and 7 mmol/L)
showed a significant increase in FBF compared with CS. In
this subgroup, glucose and FFA were normal. The combina-
tion of observations in this selected group proves that
hyperglycemia did not confound our key conclusions.

From the present study, we therefore conclude that resting
basal FBF is increased in noncomplicated type 1 diabetes.
There is no evidence that basal NO synthesis is increased.
However, arterial plasma NE concentration is decreased,
whereas the vasoconstricting response to NE is increased,
which suggests a chronic decrease in sympathetic drive. The
decrease in sympathetic tone may, in part, be responsible for
the decrease in vascular tone.

Acknowledgments
This work was supported by the “Diabetes Fonds Nederland,” grant
No. 92.602. We would like to acknowledge A. Jansen van Rosendaal
and E. Olde Riekerink for their assistance.

References
1. Tooke JE. Microvascular function in human diabetes: a physiological
2. Parving H, Viberti GC, Keen H, Christiansen JS, Lassen NA. Hemody-
amic factors in the genesis of diabetic microangiopathy. Metabolism.
3. Vallance P, Collier J, Moncada S. Effects of endothelin-derived nitric
denervation in rabbits with diabetes mellitus. Am J Physiol. 1990;259:
H55–H61.
5. Hoffman RP, Sinkey CA, Kienzle MG, Anderson EA. Muscle sympa-
thetic nerve activity is reduced in IDDM before overt autonomic neurop-
restoration of scintigraphically assessed cardiac sympathetic denervation
in newly diagnosed patients with insulin-dependent diabetes mellitus.
7. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-
action of insulin to increase nitric oxide release. J Clin Invest. 1991;90:
2548–2554.
8. Scherrer U, Brechtel G, Johnson A, Fineberg N, Baron AD. Local action
of insulin to increase nitric oxide release. J Clin Invest. 1991;90:
2548–2554.
9. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyper-
insulinemia produces both sympathetic neural activation and vasodilation
10. Rongen GA, Smits P, Thien T. N-Monomethyl-L-ARG reduces the
forearm vasodilator response to acetylcholine but not to methacholine in
11. Pedrinelli R, Sponsel M, Salvetti A. Reactive hyperemia during short-
term blood flow and pressure changes in the hypertensive forearm. J
Hypertens. 1990;8:467–471.
12. Parving H, Rasmussen SM. Transcapillary escape rate of albumin and
plasma volume in short-and long-term juvenile diabetics. Scan J Clin Lab
Hofnagel WH, Lutterman JA. An automated computerized method using
14. Devereux RB, James GD, Pickek T. What is normal blood pressure?
Comparison of ambulatory pressure level and variability in patients with
normal or abnormal left ventricular geometry. Am J Hypertens. 1993;6:
211S–215S.
15. Willemen J, Ross H, Jacobs M, Lenders JW, Thien T, Swinkels LM,
Bennad JA. Highly sensitive and specific HPLC with fluorometric
detection for determination of plasma epinephrine and norepinephrine
Measuring forearm blood flow and interpreting responses to drugs and
17. Patel V, Rassam S, Newsom W, Riek J, Rohner E. Retinal blood flow in
18. Sandeman DD, Shore A, Tooke JE. Relation of skin capillary pressure in
patients with insulin- dependent diabetes mellitus to complications and
Beck-Nielsen H, Parving HH. Effects of hyperglycaemia on kidney
function, atrial natriuretic factor and plasma renin in patients with insulin-
synthesis in the human forearm arterial bed of patients with insulin-
21. Halkin A, Benjamin N, Doktor HS, Todd SD, Viberti G, Ritter JM.
Vascular responsiveness and cation exchange in insulin-dependent diabetes.
Impaired endothelin-dependent vasodilatation in patients with insulin-
23. Elliott TG, Cockcroft JR, Groop P, Viberti GC, Ritter JM. Inhibition of
nitric oxide synthesis in forearm vasculature of insulin-dependent diabetic
patients: blunted vasocconstriction in patients with microalbuminuria. Clin
Sci. 1993;85:687–693.
24. Bank N, Ayedjian HS. Role of EDRF (nitric oxide) in diabetic renal
K, Williamson JR, McDaniel ML. Aminoguanidine, a novel inhibitor of nitric
oxide formation, prevents diabetic vascular dys-
26. Smulders RA, Stehouwer CD, Othof CG, van Kamp GJ, Teerlink T, de
Vries PM, Donker AJ. Plasma endothelin levels and vascular effects of
intravenous L-arginine infusion in subjects with uncomplicated insulin-
27. Hoogenberg K, Dullaart RP. Abnormal plasma noradrenaline response
and exercise induced albuminuria in type 1 diabetes mellitus. Scan J
AJ. Catecholamines and blood glucose control in type 1 diabetes. Dia-
29. Hjemdahl P. Plasma catecholamines: analytical challenges and physio-
30. Miller JA. Sympathetic vasoconstrictive responses to high- and low-sodium
31. Hsueh WA, Anderson PW. Systemic hypertension and the renin-angio-
tensin system in diabetic vascular complications. Am J Cardiol.
32. DeFronzo RA. The effect of insulin on renal handling of sodium, potassium,
33. Houben AHJM, Schaper NC, Nieuwenhuijzen-Kruseman AC. Acute
effects of local hyperglycaemia on peripheral blood flow in man. Diabet
Elevated Skeletal Muscle Blood Flow in Noncomplicated Type 1 Diabetes Mellitus: Role of Nitric Oxide and Sympathetic Tone
Gerald Vervoort, Jack F. Wetzels, Jos A. Lutterman, Laurus G. van Doorn, Jo H. Berden and Paul Smits

Hypertension. 1999;34:1080-1085
doi: 10.1161/01.HYP.34.5.1080

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/34/5/1080

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/