Estradiol Inhibits Smooth Muscle Cell Growth in Part by Activating the cAMP-Adenosine Pathway

Raghvendra K. Dubey, Delbert G. Gillespie, Zaichuan Mi, Marinella Rosselli, Paul J. Keller, Edwin K. Jackson

Abstract—Estradiol inhibits smooth muscle cell growth; however, the mechanisms involved remain unclear. Because estradiol stimulates cAMP synthesis and adenosine inhibits cell growth, we hypothesized that the conversion of cAMP to adenosine (ie, the cAMP-adenosine pathway) mediates in part the inhibitory effects of estradiol on vascular smooth muscle cell growth. To test this hypothesis, we examined the effects of estradiol (0.001 to 1 μmol/L) on serum-induced DNA, collagen, and total protein synthesis and cell number in the absence and presence of 1,3-dipropyl-8-p-sulfophenylxanthine (10 nmol/L; A1/A2 adenosine receptor antagonist), KF17837 (10 nmol/L; selective A2 adenosine receptor antagonist), 8-cyclopentyl-1,3-dipropylxanthine (10 nmol/L; selective A1 adenosine receptor antagonist), and 2′,5′-dideoxyadenosine (10 μmol/L; adenylyl cyclase inhibitor). Estradiol inhibited all measures of cell growth, and the concentration-dependent inhibitory curves for estradiol were shifted to the right (P<0.05) by 1,3-dipropyl-8-p-sulfophenylxanthine, KF17837, and 2′,5′-dideoxyadenosine but not by 8-cyclopentyl-1,3-dipropylxanthine. Moreover, the inhibitory effects of estradiol were enhanced by stimulation of adenylyl cyclase with forskolin and by inhibition of adenosine metabolism with erythro-9-(2-hydroxy-3-nonyl)adenine plus iodotubericidin (adenosine deaminase and kinase inhibitors, respectively). Estradiol also increased levels of cAMP and adenosine, and these effects were blocked by 2′,5′-dideoxyadenosine (P<0.05). Our results support the hypothesis that estradiol stimulates cAMP synthesis and cAMP-derived adenosine regulates smooth muscle cell growth via A2 adenosine receptors. Thus, the cAMP-adenosine pathway may contribute importantly to the antivasooclusive effects of estradiol. (Hypertension. 2000;35[part 2]:262-266.)

Key Words: hormones ■ cyclic AMP ■ adenosine ■ muscle, smooth ■ receptors, adenosine ■ vascular remodeling

17β-Estradiol is a potent inhibitor of vascular smooth muscle cell (SMC) growth1–4; however, the mechanisms responsible for this inhibitory effect remain unclear. Recent studies from our group demonstrate that adenosine via the A2 receptor is an effective inhibitor of vascular SMC growth5–7 and that in vascular SMCs, cAMP is an important determinant of adenosine production via a biochemical mechanism we refer to as the cAMP-adenosine pathway.6 This pathway involves the conversion of cAMP to AMP and hence to adenosine by the enzymes phosphodiesterase and 5′-nucleotidase, respectively. Moreover, our studies show that the inhibitory effects of exogenous cAMP on SMC growth are blocked by antagonism of A2 receptors,6 thus implying that the cAMP-adenosine pathway regulates SMC growth. Since 17β-estradiol increases cAMP levels in vascular SMCs,8 it is possible that the inhibitory effects of estradiol on SMC growth are mediated in part by the cAMP-adenosine pathway. This hypothesis was tested in the present study by determining whether estradiol increases cAMP and adenosine levels in SMCs via a mechanism that is blocked by inhibition of adenylyl cyclase, by determining whether the inhibitory effects of estradiol on SMC growth are blocked by inhibition of adenylyl cyclase and antagonism of adenosine receptors, and by determining whether the effects of estradiol on SMC growth and adenosine levels are augmented by preventing the conversion of adenosine to inactive metabolites.

Methods

Aortic SMC Culture
Aortic SMCs were cultured as explants from the descending abdominal aortas obtained from anesthetized Sprague-Dawley male rats (Charles River, Wilmington, Mass) as described previously.7 SMC purity was characterized as described in detail previously.7 SMCs in primary cultures or first passage were used for all the experiments.

Treatments
DNA, collagen, total protein synthesis, and cell proliferation studies were performed under the following treatments: (1) 17β-estradiol; (2) 17β-estradiol plus 8-cyclopentyl-1,3-dipropylxanthine (DPCPX,
a selective A2 receptor antagonist); (3) 17β-estradiol plus KF17837 (a selective A1 receptor antagonist); (4) 17β-estradiol plus 1,3-dipropyl-8-p-sulphonylphenylxanthine (DPSPX, a nonselective A1/A2 adenosine receptor antagonist); (5) 17β-estradiol plus ethyrytho-9-(2-hydroxy-3-nonyl)adenine (EHNA, an inhibitor of adenosine deaminase) plus iodotubericidin (an adenosine kinase inhibitor); (6) 17β-estradiol plus (R)-p-adenosine 3',5'-cyclic phosphorothioate (Rp-cAMP, cAMP-dependent protein kinase A inhibitor); (7) 17β-estradiol plus 2',5'-dideoxyadenosine (DDA, adenylyl cyclase inhibitor); (8) EHNA plus iodotubericidin; (9) DPCPX; (10) DPSPX; (11) KF17837; (12) DDA; and (13) Rp-cAMP.

DNA, Collagen, and Total Protein Synthesis

[3H]Thymidine, [3H]proline, and [3H]leucine incorporation studies were performed as a measure of DNA, collagen, and total protein synthesis, respectively. SMCs were plated at a density of 2.5×10⁴ cells per well in 24-well tissue culture dishes and allowed to grow in DMEM/F12 containing 10% FCS under standard tissue culture conditions. For DNA synthesis and cell number studies SMCs were grown to subconfluence, whereas for protein and collagen synthesis studies SMCs were grown to confluence. The monolayers of SMCs were then grown arrested by feeding DMEM containing 0.4% bovine serum albumin for 48 hours. Growth was stimulated by treating growth-arrested SMCs with DMEM supplemented with 2.5% FCS and containing or lacking the various treatments as described above. For DNA and total protein synthesis after 20 hours of incubation, the cells were pulsed with [3H]thymidine (1 μCi/mL) or [3H]leucine (1 μCi/mL), respectively, for an additional 4 hours. For collagen synthesis, the cells were treated for 36 hours in the presence of [3H]-proline (1 μCi/mL) or [3H]leucine (1 μCi/mL), respectively, for an additional 4 hours. For collagen synthesis, the cells were grown to confluence in 12-well culture plates containing 0.25% FCS for 48 hours to growth arrest the cells. SMCs were then treated every 24 hours for 4 days with DMEM containing 10% FCS, and then treated with FCS significantly (P<0.05, paired Student’s t test) stimulated [3H]thymidine, [3H]proline, and [3H]leucine incorporation and cell number by ≈5- to 8-fold. Treatment with 17β-estradiol significantly (P<0.05, ANOVA) inhibited FCS-induced [3H]thymidine incorporation in a concentration-dependent manner (Figure 1). In this regard, significant inhibition occurred even with physiological concentrations of 17β-estradiol (1 nmol/L), and a 50% decrease was observed at ≈1 μmol/L of 17β-estradiol (Figure 1).

Figure 1. Inhibitory effects of 17β-estradiol on 2.5% FCS-induced [3H]thymidine incorporation in the presence and absence of adenosine receptor antagonists (DPCPX, 10 nmol/L; DPSPX, 10 nmol/L; and KF17837, 10 nmol/L) (A), an adenylyl cyclase inhibitor (DDA, 10 μmol/L) (B), and a cAMP-dependent protein kinase A inhibitor (Rp-cAMP, 10 μmol/L) (B). Values are mean±SEM from 3 experiments conducted in quadruplicate. *P<0.05 vs control; §P<0.05 vs estradiol.

Statistical Analysis

All experiments were performed in triplicate or quadruplicate with 4 separate cultures, and all data are presented as mean±SEM. Statistical analysis was performed with ANOVA, paired Student’s t test, or Fisher’s least significant difference test, as appropriate. A value of P<0.05 was considered statistically significant.

Results

Treatment with FCS significantly (P<0.05, paired Student’s t test) stimulated [3H]thymidine, [3H]proline, and [3H]leucine incorporation and cell number by ≈5- to 8-fold. Treatment with 17β-estradiol significantly (P<0.05, ANOVA) inhibited FCS-induced [3H]thymidine incorporation in a concentration-dependent manner (Figure 1). In this regard, significant inhibition occurred even with physiological concentrations of 17β-estradiol (1 nmol/L), and a 50% decrease was observed at ≈1 μmol/L of 17β-estradiol (Figure 1).

Similar to the effects on [3H]thymidine incorporation, 17β-estradiol inhibited FCS-induced [3H]proline and [3H]leucine incorporation and cell number in a concentration-dependent fashion (Figures 2, 3, and 4, respectively; P<0.05, ANOVA followed by Fisher’s least significant test). The lowest concentration of 17β-estradiol that significantly inhibited FCS-induced increases in cell number was 1 nmol/L, and this concentration inhibited cell number by 16±1.6%.

Figure 2. Inhibitory effects of 17β-estradiol on 2.5% FCS-induced [3H]proline incorporation in the presence and absence of adenosine receptor antagonists (DPCPX, 10 nmol/L; DPSPX, 10 nmol/L; and KF17837, 10 nmol/L) (A), an adenylyl cyclase inhibitor (DDA, 10 μmol/L) (B), and a cAMP-dependent protein kinase A inhibitor (Rp-cAMP, 10 μmol/L) (B). Cell counts in SMCs treated with various combinations were not different from those in controls (≈3% variation); cell counts in controls were 1.46±0.07×10⁴ cells per well and in cells treated with various combinations ranged from 1.44×10⁴ to 1.49×10⁴ cells per well. Values are mean±SEM from 3 experiments conducted in quadruplicate. *P<0.05 vs control; §P<0.05 vs estradiol.
To investigate whether adenosine and its receptors participate in mediating the inhibitory effects of estradiol, the effects of 17β-estradiol (0.001 to 10 μmol/L) on SMC growth were examined in the presence and absence of DPCPX (10 nmol/L; a specific A1 adenosine receptor antagonist), KF17837 (10 nmol/L; a specific A2 adenosine receptor antagonist), and DPSPX (10 nmol/L; a nonselective A1/A2 adenosine receptor antagonist). The inhibitory effects of 17β-estradiol on FCS-induced [3H]thymidine, [3H]proline, and [3H]leucine incorporation and cell number were significantly reduced in SMCs pretreated with KF17837 and DPSPX but not DPCPX, and the inhibitory curves for 17β-estradiol were shifted to the right (Figures 1A through 4A; P < 0.05, ANOVA followed by Fisher’s least significant test).

To investigate whether cAMP and cAMP-dependent protein kinase A participate in mediating the inhibitory effects of estradiol, the effects of 17β-estradiol (0.001 to 10 μmol/L) on SMC growth were examined in the presence and absence of DDA (10 μmol/L; an adenyl cyclase inhibitor) and Rp-cAMP (10 μmol/L; a protein kinase A inhibitor). The inhibitory effects of 17β-estradiol on FCS-induced [3H]thymidine, [3H]proline, and [3H]leucine incorporation and cell number were significantly reduced in SMCs pretreated with KF17837 and DPSPX but not DPCPX, and the inhibitory curves for 17β-estradiol were shifted to the right (Figures 1B through 4B; P < 0.05, ANOVA followed by Fisher’s least significant test).

To further investigate the role of cAMP and adenosine in mediating the inhibitory effects of estradiol on SMC growth, the effects of 17β-estradiol (1 μmol/L) on SMC growth were investigated in the presence and absence of forskolin (5 μmol/L; activates adenyl cyclase and induces endogenous cAMP levels) and EHNA (10 μmol/L; prevents adenosine catabolism by inhibiting adenosine deaminase) plus iodotubericidin (0.1 μmol/L; elevates adenosine levels by inhibiting adenosine kinase activity). Analysis of the data by ANOVA followed by Fisher’s least significant test revealed that the inhibitory effects of estradiol on [3H]thymidine incorporation and cell proliferation were significantly enhanced by either forskolin or EHNA plus iodotubericidin (Figure 5A and 5B). Moreover, the increase in the inhibitory effect of 17β-estradiol by forskolin or EHNA plus iodotubericidin was abolished in SMCs pretreated with DDA (10 μmol/L), DPSPX (10 nmol/L), or KF17837 (10 nmol/L) but not DPCPX (10 nmol/L) (Figure 5A and 5B).

To ascertain whether the inhibitory effects of 17β-estradiol were mediated by cAMP-derived adenosine, we assayed the levels of cAMP and adenosine in SMCs treated for 4 hours with various treatments (Figure 6). Compared with SMCs treated with PBS, both cAMP and adenosine levels increased.

Figure 3. Inhibitory effects of 17β-estradiol on 2.5% FCS-induced [3H]leucine incorporation in the presence and absence of adenosine receptor antagonists (DPCPX, 10 nmol/L; DPSPX, 10 nmol/L; and KF 17837, 10 nmol/L) (A), an adenyl cyclase inhibitor (DDA, 10 μmol/L) (B), and a cAMP-dependent protein kinase A inhibitor (Rp-cAMP, 10 μmol/L) (B). Cell counts in SMCs treated with various combinations were not different from those in controls (<3% variation); cell counts in controls were 1.43 ± 0.04 × 10^5 cells per well and in cells treated with various combinations ranged from 1.41 ± 0.04 × 10^5 cells per well. Values are mean ± SEM from 3 experiments conducted in quadruplicate. *P < 0.05 vs control; §P < 0.05 vs estradiol.

Figure 4. Inhibitory effects of 17β-estradiol on 2.5% FCS-induced cellular proliferation (cell number) in the presence and absence of adenosine receptor antagonists (DPCPX, 10 nmol/L; DPSPX, 10 nmol/L; and KF 17837, 10 nmol/L) (A), an adenyl cyclase inhibitor (DDA, 10 μmol/L) (B), and Rp-cAMP (10 μmol/L). Cell counts in controls of various groups (ie, cells treated with FCS ± DPCPX, DPSPX, KF 17837, Rp-cAMP, or DDA) on days 0 and 4 were not different from those in controls (<r4% variation). Values are mean ± SEM from 3 experiments conducted in quadruplicate. *P < 0.05 vs control; §P < 0.05 vs estradiol.

Figure 5. Modulatory effects of forskolin (For) (5 μmol/L) and EHNA (EH) (10 μmol/L) plus iodotubericidin (IDO) (0.1 μmol/L) on 17β-estradiol (E) (1 μmol/L)-induced inhibition of 2.5% FCS-induced [3H]thymidine incorporation (A) and cell number (B) in the presence and absence of adenosine receptor antagonists (DPCPX, 10 nmol/L; DPSPX, 10 nmol/L; and KF17837, 10 nmol/L) and an adenyl cyclase inhibitor (DDA, 10 μmol/L). Values are mean ± SEM from 3 experiments conducted in quadruplicate. *P < 0.05 vs control; §P < 0.05 vs EHNA + iodotubericidin + 17β-estradiol, forskolin + 17β-estradiol; †P < 0.05 vs 17β-estradiol, EHNA + iodotubericidin, or forskolin alone.
significantly (paired Student’s t test) in SMCs treated with 17β-estradiol or forskolin. Moreover, the ability of 17β-estradiol to increase adenosine levels was enhanced significantly (P<0.05) by cotreatment with forskolin or EHNA plus iodotubercidin. The stimulatory effects of 17β-estradiol with and without forskolin or EHNA plus iodotubercidin on cAMP and adenosine levels were inhibited by DDA but not by DPSPX, DPCPX, KF17837, or Rp-cAMP (ANOVA followed by Fisher’s least significant test).

To determine whether the effects of 17β-estradiol (1 μmol/L) on cAMP and adenosine levels were estrogen receptor mediated and nongenomic in nature, cAMP and adenosine levels were measured in SMCs treated for 10 minutes with 17β-estradiol in the presence and absence of ICI 182780 (50 μmol/L; an estrogen receptor antagonist without partial agonist activity) and cycloheximide (10 μmol/L). Treatment of SMCs for 10 minutes with 17β-estradiol increased cAMP as well as adenosine levels by almost 100%, and the stimulatory effects of 17β-estradiol were blocked by ICI 182780 but not cycloheximide (data not shown).

Discussion

Our previous studies establish that SMCs synthesize adenosine and that exogenous as well as endogenous (SMC-derived) adenosine inhibits FCS-induced growth.4,5 Moreover, our prior studies demonstrate that SMCs express an active cAMP-adenosine pathway, ie, the conversion of cAMP to AMP and then to adenosine by phosphodiesterase and 5′-nucleotidase, respectively.6 Because 17β-estradiol is known to increase cAMP levels in SMCs, we hypothesized that the cAMP-adenosine pathway participates in mediating the well-known inhibitory effects of 17β-estradiol on SMC growth.1–4

The results of the present study indicate that adenosine importantly contributes to the inhibitory effects of 17β-estradiol on SMC growth. Our findings that the inhibitory effects of 17β-estradiol on SMC growth are significantly attenuated by KF17837, a specific A2 adenosine receptor antagonist, and by DPSPX, a nonselective A2 adenosine receptor antagonist, but not by DPCPX, a selective A1 adenosine receptor antagonist, suggest that 17β-estradiol inhibits SMC growth by a mechanism involving interactions of endogenous adenosine with A2 adenosine receptors. Additional evidence for the role of adenosine in mediating the inhibitory effects of 17β-estradiol are our observations that (1) treatment of SMCs with 17β-estradiol increases adenosine levels; (2) the effects of 17β-estradiol on SMC growth and adenosine levels are enhanced by EHNA and iodotubercidin, drugs that elevate endogenous adenosine levels by inhibiting adenosine deaminase and adenosine kinase activity, respectively; and (3) DPSPX and KF17837, but not DPCPX, block the inhibitory effects of 17β-estradiol on SMC growth even in the presence of EHNA and iodotubercidin without influencing adenosine levels. Together, these findings provide evidence that 17β-estradiol inhibits vascular SMC growth in part by increasing adenosine levels.

The results of the present study suggest that increased adenosine synthesis in response to 17β-estradiol is derived from cAMP. This hypothesis is supported by our findings that 17β-estradiol causes a concomitant increase in cAMP and adenosine levels and that inhibition of adenylyl cyclase attenuates 17β-estradiol–induced increases in cAMP and adenosine levels. The observation that inhibition of adenylyl cyclase also attenuates the growth-inhibitory effects of 17β-estradiol suggests that cAMP-derived adenosine participates in the mechanism by which 17β-estradiol inhibits SMC growth.

The fact that inhibition of adenylyl cyclase prevents 17β-estradiol–induced inhibition of vascular SMC growth is consistent with 2 hypotheses that are not mutually exclusive: (1) 17β-estradiol increases cAMP levels, and the direct intracellular effects of cAMP via cAMP-dependent protein kinase mediates the growth-inhibitory actions of 17β-estradiol; and (2) 17β-estradiol increases cAMP levels, and cAMP is metabolized to adenosine, which mediates the growth-inhibitory actions of 17β-estradiol. The present study supports the second, but not the first, mechanism since we observe that the growth-inhibitory effects of 17β-estradiol are reduced by antagonism of adenosine receptors but are not reduced by blockade of cAMP-dependent protein kinase with Rp-cAMP. In this regard, our previous studies demonstrate that adenosine stimulates nitric oxide release from vascular SMCs via a pathway not involving adenylyl cyclase/protein kinase A.10 Since nitric oxide inhibits SMC proliferation,11 this provides a protein kinase A–independent pathway via which 17β-estradiol–induced adenosine could inhibit SMC growth.

Although the present studies focus on vascular SMCs, our previous studies demonstrate that not only vascular SMCs

Figure 6. Modulatory effects of forskolin (5 μmol/L) and EHNA (10 μmol/L) plus iodotubercidin (0.1 μmol/L) on 17β-estradiol (1 μmol/L or as indicated in the figure)–induced adenosine and cAMP synthesis from SMCs treated for 4 hours in the presence and absence of adenosine receptor antagonists (DPSPX, 10 nmol/L; DPSPX, 10 nmol/L; and KF17837 [KF], 10 nmol/L), an adenylyl cyclase inhibitor (DDA, 10 μmol/L), and a cAMP-dependent protein kinase A inhibitor (Rp-cAMP, 10 μmol/L). Values are mean±SEM from 3 experiments conducted in quadruplicate. □ P<0.05 vs control; ● P<0.05 vs estradiol, forskolin, or EHNA alone; Veh indicates vehicle; other abbreviations are as defined in Figure 5 legend.
In conclusion, we provide evidence that the cAMP-adenosine pathway, via activation of A₁ adenosine receptors, participates in mediating the inhibitory effects of 17β-estradiol on vascular SMC growth (Figure 7). Thus, the cAMP-adenosine pathway may importantly contribute to the vasoprotective and cardioprotective effects of 17β-estradiol.

Acknowledgments

This study was supported by grants from the Swiss National Science Foundation (grants 32-54172.98 and 32-55738.98) and the National Institutes of Health (HL-55314 and HL-35909). KF17837 was kindly provided by Dr Fumio Suzuki of Kyowa Hakko Kogyo Co Ltd, (Sunto, Shizuoka, Japan).

References

Estradiol Inhibits Smooth Muscle Cell Growth in Part by Activating the cAMP-Adenosine Pathway
Raghvendra K. Dubey, Delbert G. Gillespie, Zaichuan Mi, Marinella Rosselli, Paul J. Keller and Edwin K. Jackson

Hypertension. 2000;35:262-266
doi: 10.1161/01.HYP.35.1.262

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/35/1/262

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Hypertension_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Hypertension_ is online at:
http://hyper.ahajournals.org//subscriptions/