Angiotensin-(1-7) Reduces Norepinephrine Release Through a Nitric Oxide Mechanism in Rat Hypothalamus

Mariela M. Gironacci, Marcelo Vatta, Martín Rodríguez-Ferme, Belisario E. Fernández, Clara Peña

Abstract—Angiotensin (Ang)-(1-7) elicits a facilitatory presynaptic effect on peripheral noradrenergic neurotransmission, because biological responses to the heptapeptide on occasion are tissue specific, the present investigation was undertaken to study its action on noradrenergic neurotransmission at the central level. In rat hypothalamus labeled with [3H]-norepinephrine, 100 to 600 nmol/L Ang-(1-7) diminished norepinephrine released by 25 mmol/L KCl. This effect was blocked by the selective angiotensin type 2 receptor antagonist PD 123319 (1 μmol/L) and by the specific Ang-(1-7) receptor antagonist [D-Ala5]Ang-(1-7) (1 μmol/L) but not by losartan (10 mmol/L to 1 μmol/L), a selective angiotensin type 1 receptor antagonist. The inhibitory effect on noradrenergic neurotransmission caused by Ang-(1-7) was prevented by 10 μmol/L Nω-nitro-L-arginine methylester, an inhibitor of nitric oxide synthase activity, and was restored by 100 μmol/L L-arginine, precursor of nitric oxide synthesis. Methylene blue (10 μmol/L), an inhibitor of guanylate cyclase considered as the target of nitric oxide action, as well as Hoe 140 (10 μmol/L), a bradykinin B2-receptor antagonist, prevented the inhibitory effect of the heptapeptide on neuronal norepinephrine release, whereas no modification was observed in the presence of 0.1 to 10 μmol/L indomethacin, a cyclooxygenase inhibitor. Our results indicate that Ang-(1-7) has a tissue-specific neumodulatory effect on noradrenergic neurotransmission, being inhibitory at the central nervous system by a nitric oxide–dependent mechanism that involves angiotensin type 2 receptors and local bradykinin production. (Hypertension. 2000;35:1248-1252.)

Key Words: angiotensin ● norepinephrine ● nitric oxide ● angiotensin antagonist ● bradykinin ● prostaglandins

Angiotensin (Ang)-(1-7) is considered a bioactive end product of the renin-angiotensin system formed from Ang I metabolism through an enzymatic pathway independent of the angiotensin-converting enzyme.1 It can be formed either from Ang I or Ang II by a prolyl-endopeptidase that cleaves the Pro-Phe bond.1,2 Ferrario and coworkers2 demonstrated the presence of Ang-(1-7) in several regions of the rat brain such as the hypothalamus, amygdala, and medulla oblongata but not in the cerebral cortex and cerebellum. In addition, type 1 (AT1) and type 2 (AT2) Ang receptors were described in several regions and nucleus of the central nervous system, including the hypothalamus.3,4

Although Ang-(1-7) is not an agonist in terms of activating vasoconstriction,5 stimulating thirst,6 or promoting aldosterone secretion,5 the heptapeptide causes neuronal excitation in the paraventricular nucleus of hypothalamus and dorsal vagal complex of the medulla oblongata,7 facilitates the noradrenergic neurotransmission,8 and stimulates prostaglandin9–11 and vasopressin release12 with potency comparable to that of Ang II. Conversely, some of the effects of Ang-(1-7) are opposite to those elicited by Ang II, that is, it displays an antiproliferative action on vascular smooth muscle cells,13 produces natriuresis14 and diuresis15 as well as vasodilation,16,17 and facilitates the baroreflex activity.7,18 Several studies indicated that Ang-(1-7) effects are tissue-specific, that is, the heptapeptide activates Na+ K+-ATPase in rat brain synaptosomal membranes, whereas a biphasic effect on this enzymatic system is observed in rat renal membranes.19 Furthermore, Gironacci et al8 have reported a facilitatory effect of the heptapeptide on the sympathetic neurotransmission in rat atria. Conversely, this stimulatory action was not detected in the rabbit vas deferens.11

Because of the suggested tissue-specific activity and the presynaptic effect of Ang-(1-7) on peripheral noradrenergic neurotransmission,8 the present study was performed to assess the effect of Ang-(1-7) on K+-evoked neuronal release of norepinephrine (NE) in rat hypothalamus.

Methods

Animals and Chemicals
Male Sprague-Dawley rats weighing 250 to 300 g were used. dl-[7,8-3H] norepinephrine (specific activity 32 Ci/mmol) was purchased from Amersham Life Science; cocaine hydrochloride was kindly supplied by Dr Edda Villaamil (Cátedra de Toxicología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires);...
Hoe 140 was kindly supplied by Dr Martiarena (Cátedra de Control de Medicamentos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires); hydrocortisone, pargyline, indomethacin, methylene blue, L-arginine, and Nω-nitro-L-arginine methylester were from Sigma Chemical Co. Ang-(1-7) and [D-Ala7]Ang-(1-7) were synthesized in our laboratory by the Merrifield solid-phase procedure, as previously described.

Experimental Protocol

[1H]NE release was measured according to the technique described by Vatta et al. with slight modification. Briefly, minced rat hypothalami were incubated at 37°C for 30 minutes in 2 mL of standard Krebs solution. Monoamine-oxidase activity and extraneuronal NE uptake were inhibited by the addition of 0.1 mmol/L pargyline and 0.1 mmol/L hydrocortisone, respectively. NE stores were labeled with 2.5 μCi/mL [3H]NE (100 nmol/L) during a 30-minute incubation period. After 8 consecutive 5-minute washes with Krebs solution, tissues were then incubated during a period of 4 minutes in high-potassium Krebs solution containing 0.1 mmol/L cocaine to inhibit neuronal NE uptake, 0.1 mmol/L hydrocortisone, and 0.1 mmol/L pargyline. Two consecutive samples of incubation medium were collected every 2 minutes (S1 and S2), and [3H]NE release was measured in each period as the amount of radioactivity present in the incubation medium. Ang-(1-7) and losartan were present during the second 2-minute period. PD 123319 and [D-Ala7]Ang-(1-7) were added during S1 and S2. Methylene blue was present in the incubation medium. Ang-(1-7) and losartan were simultaneously present in the incubation medium. Ang-(1-7) (100 nmol/L) was added alone or with 1 μmol/L of each antagonist during S2, [D-Ala7]Ang-(1-7) and PD 123319 preceded the addition of Ang-(1-7) by 2 minutes. Values are mean±SEM (n=10). *P<0.05 as compared with control.

Statistical Analysis

All values are mean±SEM. Data were submitted to 1-way ANOVA followed by the Bonferroni test. Probability values <0.05 were considered statistically significant.

Results

To determine Ang-(1-7) effect on K⁺-evoked neuronal NE release in hypothalamus, different concentrations of the heptapeptide were tested. Data given in Figure 1 show that 100, 300, and 600 nmol/L Ang-(1-7) diminished neuronal NE release evoked by K⁺.

To study the Ang-receptor subtypes coupled to the inhibitory activity of Ang-(1-7) on neuronal NE release, the effects of selective antagonists for AT₁- and AT₂-receptor subtypes were assessed. Results showed that losartan (10 nmol/L to 1 μmol/L), a selective AT₂-receptor antagonist, abolished Ang-(1-7)–inhibitory effects (Figure 2). Simultaneous addition of losartan and PD 123319 did not modify the stimulated NE release (data not shown).

It has been demonstrated that Ang-(1-7) exerts several effects through the NO pathway. To assess the role of NO as possible mediator of Ang-(1-7) effect on neuronal NE release evoked by K⁺ in rat hypothalamus, we investigated the effect of Ang-(1-7) in the presence of Nω-nitro-L-arginine methylester (L-NAME), an inhibitor of NO synthase activity. The reduction of evoked NE release produced by 100 nmol/L Ang-(1-7) was not blocked by losartan (10 nmol/L to 1 μmol/L) (Figure 2). On the other hand, the role of AT₂ receptor on Ang-(1-7) reduction of evoked NE release in hypothalamus was studied in the presence of PD 123319, a selective AT₂-receptor blocker, which, at levels ≥1 μmol/L, abolished Ang-(1-7)–inhibitory effects (Figure 2). Simultaneous addition of losartan and PD 123319 did not modify the stimulated NE release (data not shown).

The selective Ang-(1-7) antagonist [D-Ala7]Ang-(1-7) (1 μmol/L) partially blocked the effect of Ang-(1-7) on NE release (Figure 2). PD 123319 and D-Ala7-Ang-(1-7) each had no effect by itself on NE release (data not shown).

It has been demonstrated that Ang-(1-7) exerts several effects through the NO pathway. To assess the role of NO as possible mediator of Ang-(1-7) effect on neuronal NE release evoked by K⁺ in rat hypothalamus, we investigated the effect of Ang-(1-7) in the presence of Nω-nitro-L-arginine methylester (L-NAME), an inhibitor of NO synthase activity. The reduction of evoked NE release produced by 100 nmol/L Ang-(1-7) was prevented by the addition of 10 μmol/L L-NAME and was restored when L-arginine (100 μmol/L), the precursor of NO synthesis, was simultaneously present (Figure 3). Moreover, 10 μmol/L methylene blue, an inhibitor of guanylate cyclase considered as the target of NO action, prevented the inhibitory effect of Ang-(1-7) on NE release (Figure 3). L-NAME and methylene blue did not alter K⁺-evoked neuronal NE output by itself (data not shown).

It has been reported that NO formation after AT₁-receptor stimulation is due to the activation of local bradykinin (BK) production. Therefore, we investigated the effect of Hoe 140, a kinin B₁-receptor antagonist, on the inhibitory effect of Ang-(1-7) on NE release. As shown in Figure 4, 10 μmol/L Hoe 140 completely blocked the induced reduction of K⁺-evoked neuronal NE release caused by the heptapeptide in rat hypothalamus. The antagonist had no direct effect.

To assess if the prostaglandin pathway is involved in Ang-(1-7) effects, experiments were performed in the presence of 0.1 to 10 μmol/L indomethacin, a cyclooxygenase
inhibitor. No differences in the effect elicited by 100 nmol/L Ang-(1-7) were observed (Figure 5). Indomethacin (0.1 to 10 \(\mu \)mol/L) failed to modify by itself the \(K_1 \)-evoked neuronal \([3H]\)NE release (data not shown).

Discussion

In agreement with previous studies in rat medulla,26 the present findings indicate that Ang-(1-7) attenuates the \(K_1 \)-evoked neuronal \([3H]\)NE release from rat hypothalamus. The inhibitory effect induced in rat hypothalamus differs from that produced in the peripheral nervous system, in which the heptapeptide acts presynaptically, increasing NE released by nerve stimulation.8

It has been reported that Ang-(1-7) elicits a tissue-specific neuromodulatory action. In this regard, a facilitatory effect on noradrenergic neurotransmission in rat atria was observed,8 but no effect in rabbit vas deferens was described.11

Biological activity of Ang-(1-7) is distinguishable from that of Ang II, and frequently contrasting effects were observed27: For example, Ang-(1-7) facilitates the baroreflex7,18 as well as induces vasodilatation,16,17,21 effects not produced by Ang II. There is evidence that the renin-angiotensin system regulates several functions through multiple-level feedback mechanisms.28,29 Contrasting activities of Ang-(1-7) and Ang II would further confirm the hypothesis that the renin-angiotensin system may limit Ang II effects through generation of the heptapeptide.27 In agreement, the present results show that Ang-(1-7) opposes the enhancement on \(K_1 \)-induced \([3H]\)-NE release from rat hypothalamus caused by Ang II.30,31

The decreased NE release caused by Ang-(1-7) was blocked by the AT2-receptor antagonist PD 123319 and not by the AT1-receptor antagonist losartan, suggesting that AT2 receptors are involved in such response. In fact, central responses of Ang-(1-7) appear to be more sensitive to inhibition by AT2-receptor antagonists. For example, prostaglandin synthesis in human astrocytes9 and substance P release in rat hypothalamus32 as well as neuronal excitation in the paraventricular nucleus7 induced by Ang-(1-7) were blocked by AT2-receptor antagonists.

Interestingly, both AT1 and AT2 receptors appear to have antagonistic roles on central noradrenergic neurotransmission, since Ang II–facilitated NE release is mediated by AT1 receptors4 whereas Ang-(1-7) inhibitory action on NE release is coupled to AT2 receptors (present results). Several reports have suggested that these receptors mediate opposite physiological effects.24

Furthermore, the inhibitory action of Ang-(1-7) on NE release was partially prevented by \([D-Ala^7]\)Ang-(1-7), suggesting that Ang-(1-7) receptors are also involved. Likewise, the stimulation of specific Ang-(1-7) receptors accounts for the Ang-(1-7)–induced excitation of paraventricular neurons in rat13 and \([3H]\)arachidonic acid release in rabbit aortic smooth muscle cells.34 In this latter case, both PD 123319 and \([D-Ala^7]\)Ang-(1-7) were required to fully block the response.

Because Ang II increases NE release through AT1-receptor activation and not through AT2 receptors, the opposite response induced by losartan itself may result from blockade of
endogenous Ang II binding to AT$_1$ receptors, as it was previously suggested.35,36 We disregarded this possibility in our results because the addition of losartan plus PD 123319 did not modify the stimulated NE release, suggesting that losartan may unmask the binding of endogenous either Ang-(1-7) or Ang II to AT$_2$ sites.

Ang-(1-7) is a potent stimulator of prostaglandin release in neural and vascular cells.9–11 Furthermore, vasodilation of cerebral arteries as well as the natriuresis and depressor activities produced by Ang-(1-7) could be abolished by indomethacin, suggesting that these effects are mediated by prostaglandins.37 Despite their inhibitory role on NE release, the attenuation on sympathetic neurotransmission caused by Ang-(1-7) in the rat hypothalamus (present results) was not prevented by indomethacin, excluding prostaglandin involvement.

Because the neuromodulatory effect of Ang-(1-7) on NE release was blocked by L-NAME and methylene blue, an NO-mediated mechanism is suggested in accordance with previous reports that demonstrated NO dependence in various Ang-(1-7) effects.16,21–23 Moreover, NO formation induced by Ang-(1-7) (present data) after AT$_2$-receptor stimulation appears to be due to the activation of local BK production, since the inhibitory effect of the heptapeptide on NE release disappeared in the presence of Hoe 140, a B$_2$-receptor antagonist. Accordingly, Seyedi et al38 have shown that the decreased aortic NO production induced by Ang-(1-7) resulted from the activation of AT$_1$ receptors and also involved local BK production. In fact, it recently has been shown that mice lacking AT$_2$ receptors have low renal BK and NO production,25 suggesting that these receptors mediate BK and NO formation. It should be pointed out that Ang-(1-7) interaction with kinins is a receptor-mediated event and not simply attributable to angiotensin-converting enzyme inhibition, which may possibly prevent BK degradation29 or down-regulation of the B$_2$ receptor.40

In conclusion, Ang-(1-7) has a tissue-specific neuromodulatory effect on noradrenergic neurotransmission, being inhibitory at the central level by a NO-dependent mechanism that involves AT$_2$ receptors and local BK generation.

Acknowledgments
This work was supported by grants from UBACYT FA134 and TB58, CONICET PID4566, PIP0492, and ANPCYT PMT-PICl16. The excellent technical assistance of Adriana Turicci is gratefully acknowledged.

References

Angiotensin-(1-7) Reduces Norepinephrine Release Through a Nitric Oxide Mechanism in Rat Hypothalamus
Mariela M. Gironacci, Marcelo Vatta, Martín Rodríguez-Fermepín, Belisario E. Fernández and Clara Peña

Hypertension. 2000;35:1248-1252
doi: 10.1161/01.HYP.35.6.1248

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/35/6/1248

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/