Hypothesis Regarding the Pathophysiological Role of Alternative Pathways of Angiotensin II Formation in Atherosclerosis

Kikuo Arakawa, Hidenori Urata

Abstract—The renin-angiotensin system has been studied and recognized as one of the major blood pressure–regulating systems for the past century. In the last quarter century, however, many alternative pathways of angiotensin II formation have been found, and among them, chymase has been a focus of interest because of its specificity and potency in the human cardiovascular system. Chymase evidently is not involved in functional regulation of blood pressure at least in the short term, but evidence is accumulating that it may be involved in structural remodeling of the cardiovascular system. We found increased vascular chymase activity in atherosclerotic lesions of the human aorta as well as in cardiac remodeling after myocardial infarction. We found a significant positive correlation between serum total or LDL cholesterol levels and arterial chymase-dependent angiotensin II–forming activity in patients who were undergoing coronary artery bypass operation, suggesting that high serum cholesterol may trigger upregulation of vascular chymase and facilitate the development of atherosclerosis. This hypothesis was tested in Syrian hamsters fed a high cholesterol diet containing 0.5% cholesterol: A marked lipid deposition in the aortic cusp developed and the plasma cholesterol levels were positively correlated with aortic chymase activity. An orally active nonpeptide chymase inhibitor almost canceled this lipid deposition. These clinical and experimental data indicated an association between cholesterol and vascular chymase upregulation that may facilitate the development of atherosclerosis. (Hypertension. 2000;36:638-641.)

Key Words: kallikrein ■ angiotensin-converting enzyme ■ atherosclerosis ■ cardiovascular diseases

Locally formed angiotensin (Ang) II is thought to play some pathological roles in the development of hypertensive heart disease, congestive heart failure, and acute myocardial infarction. This is substantiated by the fact that the introduction of ACE inhibitors improved the morbidity and mortality rates of patients with various cardiovascular diseases. In the last quarter century, however, many other Ang II–forming enzymes have been found.1 We have found that trypsin2 as well as kallikrein3 generates Ang II not only in test tubes but in ischemic dog heart4 and ischemic human leg5 and even normal healthy individuals when exercised.6 Among these Ang II–forming enzymes, chymase is most potent in human tissues including heart, aorta, lung, liver, and so forth.7 It is now evident, however, that chymase is not involved in blood pressure regulation,8 but evidence has been accumulating that it may be involved in cardiovascular remodeling. Two recent reports suggested that in the heart and vasculature, ACE-independent Ang II formation takes place in vivo.9,10 We further investigated how human chymase is involved in cardiovascular diseases.

Clinical Evidence for Involvement of Chymase in Atherogenesis

We have found an increased activity of arterial chymase in atherosclerotic lesions of the human aorta.11 We determined aortic Ang II–forming activity (AIIFA) and the histochemical localization of each Ang II–forming enzyme in the atheromatous human aorta. Specimens of normal (n=9), atherosclerotic (n=8), and aneurysmal (n=6) human aortas were obtained at autopsy or cardiovascular surgery. Total AIIFA was significantly higher in atherosclerotic and aneurysmal lesions than in normal aorta (Figure 1). Most (80% to 90%) AIIFA in the human aorta in vitro was chymase dependent in normal as well as in atherosclerotic aortas (Figure 1). Immunocytochemical staining of the corresponding aortic sections with anti-chymase, anti-trypsin, or anti-ACE antibodies showed that chymase–positive mast cells were located in the tunica adventitia of normal and atheromatous aortas, whereas ACE–positive cells were localized in endothelial cells of normal aorta and in macrophages and smooth muscle cells of atheromatous neointima. The number of activated mast

Received March 27, 2000; first decision July 24, 2000; revision accepted July 28, 2000.
From the Department of Internal Medicine, School of Medicine, Fukuoka University, Fukuoka, Japan.
Correspondence to Hidenori Urata, MD, Department of Internal Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan. E-mail uratah@fukuoka-u.ac.jp
© 2000 American Heart Association, Inc.
Hypertension is available at http://www.hypertensionaha.org
cells in the aneurysmal lesions (18%) was significantly higher than in normal aorta. Chymase dAlIFa in atherosclerotic and aneurysmal lesions was significantly greater than in normal aorta. *P<0.01 vs total AIIFA in normal aorta; †P<0.01 vs chymase dAlIFa in normal aorta. This figure is modified from Reference 11.

Figure 2. Relation between serum total (a) and LDL (b) cholesterol concentration and chymase-dependent Ang II–forming activity in human internal thoracic artery. There was positive correlation between chymase-dependent AlIFa and total (n=32, r=0.60, P<0.001) and LDL (n=21, r=0.47, P<0.05) cholesterol concentration. ●, Pravastatin-treated patients. This figure is modified from Reference 13.
to elucidate the mechanism for the elimination of lipid deposit by a chymase inhibitor.

Pathological Involvement of Human Chymase in Atherogenesis

Our clinical and experimental data indicated a close association between cholesterol level and arterial chymase upregulation together with development of atherosclerosis. Our current hypothesis is as follows (Figure 3): Hypercholesterolemia may activate adventitial mast cells containing chymase, which in turn release chymase and increase adventitial Ang II and interleukin-1β concentration.15 These cytokines are known to be proatherogenic and probably may facilitate intimal lipid deposition observed in our experimental model. In addition, chymase by itself is known to have a number of proatherogenic direct actions by degrading the extracellular matrix,16,17 modifying apolipoprotein AI or B,18 and producing endothelin (1-31).19 These direct actions of chymase may also cooperate, at least in part, in the atherogenic process.

Despite the considerable amount of evidence regarding pathophysiological roles of chymase, several investigators have suggested that unlike ACE, chymase contribution in the local Ang II formation in vivo is limited because of the existence of endogenous serine proteinase inhibitors in the interstitial fluid.20,21 It is obvious that chymase activity in plasma is completely inhibited by circulating endogenous serine proteinase inhibitors such as α2-macroglobulin and α1-anti-trypsin.22,23 On the other hand, a majority of tissue chymase exists as a bound form by its basic ionic charge to the extracellular matrixes including proteoglycan or heparan sulfate.24 Since the bound-form chymase appears to be resistant to endogenous serine proteinase inhibitors, tissue chymase is likely to be enzymatically active to produce Ang II.9,25 Our recent observation supported this concept because treatment with an orally active chymase inhibitor decreased Ang II immunoreactivity in the adventitia of the hamster aorta, whereas those in the intima and media remained unchanged (Uehara and Urata, et al, unpublished observation, 2000). This result suggests that aortic chymase contributes adventitial Ang II formation in vivo.

In conclusion, several alternative Ang II–forming serine proteinases (chymase, kallikrein, and cathepsin G) are activated in several pathological conditions such as ischemia, hypercholesterolemia, hypertension, and local noninfectious inflammation. Since these alternative Ang II–forming enzymes appear not to play a major role in blood pressure regulation, their main role appears to be associated with the development of structural tissue remodeling including post–myocardial infarction, atherosclerosis, and local inflammation.

References

10. Suzuki H, Caughey GH, Gao XP, Rubinstein I. Mast cell chymase-like protease(s) modulates Escherichia coli lipopolysaccharide-induced...


Hypothesis Regarding the Pathophysiological Role of Alternative Pathways of Angiotensin II Formation in Atherosclerosis
Kikuo Arakawa and Hidenori Urata

Hypertension. 2000;36:638-641
doi: 10.1161/01.HYP.36.4.638

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/36/4/638

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/