Interactions Between Angiotensin-(1-7), Kinins, and Angiotensin II in Kidney and Blood Vessels

Robson Augusto Souza dos Santos, Kátia Tomagnini Passaglio, João Bosco Pesquero, Michael Bader, Ana Cristina Simões e Silva

Abstract—The heptapeptide angiotensin (Ang)-(1-7) is currently considered one of the biologically active end products of the renin-angiotensin system. The formation of Ang-(1-7) by pathways independent of Ang II generation, the selectivity of its actions, and its peculiar property of exhibiting effects that are partially opposite of those of the parent compound, Ang II, confer a unique biochemical and functional profile to this peptide. In this article, we will review novel aspects of the biological actions of Ang-(1-7), dealing with its interaction with Ang II and kinins, especially in the kidney and blood vessels. (Hypertension. 2001;38[part 2]:660-664.)

Key Words: bradykinin ■ renin-angiotensin system ■ receptors, angiotensin

The heptapeptide angiotensin (Ang)-(1-7) is formed from Ang I and Ang II by tissue peptidases, including neutral endopeptidase (neprilysin), thimet oligopeptidase, prolyl-carboxypeptidase, and prolyl-endopeptidase.1 In addition, the possibility should be considered that at least in the kidney and heart, Ang-(1-7) could be formed from Ang I or Ang II by a pathway involving the ACE-related enzyme ACE22,3 (Figure 1). Once formed, Ang-(1-7) is rapidly hydrolyzed, especially by ACE.4 Therefore, in the presence of ACE inhibition, the levels of Ang-(1-7), which circulates in blood at concentrations close to those of Ang II, raises several-fold,5 probably owing to both the increase in Ang I concentration and the decrease in Ang-(1-7) breakdown. The related observation that Ang-(1-7) can increase following long-term administration of angiotensin type 1 (AT1) receptor blockers1 raises the possibility that Ang-(1-7) contributes to the pharmacological effects of both ACE inhibitors and AT1 receptor antagonists.

Interactions between Ang-(1-7) and Kinins in Blood Vessels

Most of the interactions between Ang-(1-7) and bradykinin (BK) have been reported to occur in blood vessels.1,6–11 There are 2 major types of interaction: potentiation of BK by Ang-(1-7) and mediation of the vascular actions of Ang-(1-7) by kinins, although the latter does not exclude the former. Potentiation of BK by Ang-(1-7) has been observed in conscious normotensive and hypertensive rats in terms of the BK hypotensive effect in the whole animal1–6 and the relaxation produced by BK. Similarly, Almeida et al10 have shown that Ang-(1-7) at 2 nmol/L concentration increased the vasodilation produced by BK in isolated rat hearts. Interestingly, the venoconstriction produced by BK in rabbit endothelium denuded femoral vein was also potentiated by Ang-(1-7),11 indicating that the BK potentiating activity of Ang-(1-7) is not an exclusively endothelium-dependent phenomenon. Potentiation of bradykinin by Ang-(1-7) has also been described in other preparations. In Chinese hamster ovary cells co-transfected with the human cDNA for BK-B2 receptors and ACE, Deddish et al12 described a potentiating effect of Ang-(1-7) on the arachidonic acid release induced by BK. Bomtempo et al13 observed that intracerebroventricular infusion of a combination of subeffective doses of BK and Ang-(1-7) increased baroreflex sensitivity. Furthermore intracerebroventricular infusion of the BK-B2 receptor antagonist HOE 140 produced a marked attenuation of the facilitatory effect of Ang-(1-7) on baroreflex sensitivity. The mechanism of the BK potentiating activity of Ang-(1-7) is complex. It appears to involve receptor-mediated facilitation of NO release6,10,14 and/or prostaglandins,6,7,10 endothelium-derived hyperpolarizing factor,7 binding to ACE facilitating the cross-talk between ACE and BK-B2 receptors,12 and ACE inhibition.6 The relative contribution of each of these mechanisms appears to change from vascular bed to vascular bed, with species and probably with vessel diameter.1

Evidence that Ang-(1-7) actions can be kinin mediated has been obtained with several preparations.8,9,13–15 In all studies aiming at clarifying the contribution of kinins to the action of isolated dog coronary arteries with Ang-(1-7) increased the relaxation produced by BK. Similarly, Almeida et al10 have shown that Ang-(1-7) at 2 nmol/L concentration increased the vasodilation produced by BK in isolated rat hearts. Interestingly, the venoconstriction produced by BK in rabbit endothelium denuded femoral vein was also potentiated by Ang-(1-7),11 indicating that the BK potentiating activity of Ang-(1-7) is not an exclusively endothelium-dependent phenomenon. Potentiation of bradykinin by Ang-(1-7) has also been described in other preparations. In Chinese hamster ovary cells co-transfected with the human cDNA for BK-B2 receptors and ACE, Deddish et al12 described a potentiating effect of Ang-(1-7) on the arachidonic acid release induced by BK. Bomtempo et al13 observed that intracerebroventricular infusion of a combination of subeffective doses of BK and Ang-(1-7) increased baroreflex sensitivity. Furthermore intracerebroventricular infusion of the BK-B2 receptor antagonist HOE 140 produced a marked attenuation of the facilitatory effect of Ang-(1-7) on baroreflex sensitivity. The mechanism of the BK potentiating activity of Ang-(1-7) is complex. It appears to involve receptor-mediated facilitation of NO release6,10,14 and/or prostaglandins,6,7,10 endothelium-derived hyperpolarizing factor,7 binding to ACE facilitating the cross-talk between ACE and BK-B2 receptors,12 and ACE inhibition.6 The relative contribution of each of these mechanisms appears to change from vascular bed to vascular bed, with species and probably with vessel diameter.1

Evidence that Ang-(1-7) actions can be kinin mediated has been obtained with several preparations.8,9,13–15 In all studies aiming at clarifying the contribution of kinins to the action of
Ang-(1-7), the BK-B2 antagonist HOE 140 was used. This approach does not rule out the possibility that Ang-(1-7) could be acting by potentiating endogenous kinins or by a cross-talk mechanism dependent on unoccupied BK-B2 receptors. Only a preliminary report is available concerning a possible direct effect of Ang-(1-7) on kinin release.16 Particularly interesting, however, is the recent finding reported by Tsutsumi et al17 about the kinin-releasing effect of AT2 receptor activation, involving intracellular acidification which in turn activates kininogenases. Whether a similar mechanism is involved in some of the Ang-(1-7) actions remains to be elucidated.

The importance of the interaction of Ang-(1-7) with BK has been recently underscored. Fernandes et al18 observed that in an in situ preparation of rat mesenteric microvessels, the Ang-(1-7) selective antagonist, the d-Ala2-Ang-(1-7) (A-779) analogue,18 completely reversed the potentiation of the BK effect produced by acute or chronic treatment with the ACE inhibitor enalapril. In untreated rats, no effect of A-779 on the vasodilator activity of BK was observed. These observations open the intriguing possibility that Ang-(1-7) can play an important role in the mechanisms leading to potentiation of BK by ACE inhibitors at the arteriolar level. More important, these findings suggest that Ang-(1-7) may be importantly involved in the cardiovascular effects of ACE inhibitors, in which increased levels/actions of bradykinin may be implicated.19

Interactions Between Angiotensins and Kinins in the Kidney

As demonstrated for the renin-angiotensin (RAS), all the components of the kallikrein-kinin system (KKS) are expressed within the kidney, exerting a paracrine influence on local nephron function.20,21 Furthermore, it is well known that renal KKS can produce local concentrations of BK much higher than those present in blood.21 The major effects of the renal KKS, diuresis and natriuresis, involves BK-B2 receptors and are caused by an increase in renal blood flow and by inhibition of sodium and water reabsorption in the distal nephron.21,22 Indeed, this system is believed to play a pivotal role in the regulation of fluid and electrolyte balance, mostly through its renal actions.22

The interactions between the RAS and KKS at the renal level are only starting to be appreciated. An evidence for a possible interaction between the 2 systems is the simultaneous presence of KKS and RAS components and receptors along the nephron.21,22 Transgenic animals with various alterations of the KKS and RAS have been recently produced.17,21,23,24 This approach has substantially increased the understanding of the physiological role of these peptidergic systems and the interaction between them.23 Using AT1 receptor–deficient mice, Tsuchida et al24 showed that the BK-B2 receptor system has a potent antihypertrophic effect on the renal vasculature in vivo. On the other hand, a number of studies have suggested that AT2 receptors may interact with the KKS.17,21,25 Siragy et al26 postulated that Ang II tonically stimulates renal kinin peptide production by an AT2 receptor–dependent mechanism. However, studies performed by Campbell and coworkers21 do not support the hypothesis that the AT2 receptor regulates kinin peptide production. Their results point to a role of the AT1 receptor mechanism in the stimulation of kinin peptide production by Ang II, because losartan reduced kidney levels of BK and its metabolism.21 These discrepancies may be caused by methodological limitations in the measurement of kinins.21

In our laboratory, we recently studied the interactions between Ang-(1-7) and BK in the kidney by examining the renal effects of Ang-(1-7) in transgenic rats harboring the human tissue kallikrein gene (TGR [hKLK1]).26 These animals present a significant increase in the bradykinin concentration in the kidney.27 As shown in Figure 2, administration of a low dose of Ang-(1-7) to Sprague-Dawley rats submitted to acute volume expansion produced a significant attenuation of the increase in the diuresis and natriuresis produced by this maneuver. A striking difference in the response to Ang-(1-7) was observed in transgenic rats. In these animals, Ang-(1-7) produced an increase of the diuresis and natriuresis evoked by acute extracellular volume expansion. These results suggest that, more than mediating some of the Ang-(1-7) effects, kinins can act by modifying the actions of Ang-(1-7), at least in the kidney. Alternatively, TGR (hKLK1) could present low renal levels of Ang-(1-7), and this putative imbalance was corrected by the exogenous administration of the heptapeptide. The interaction of Ang-(1-7) with kinins appears not to be limited to BK. We have recently shown that in isolated perfused rat kidneys Ang-(1-7) potentiated the effect of the B2 receptor agonist Des-Arg9-BK.28

Interactions of Ang-(1-7) With Ang II in the Kidney

The renal effects of the RAS are very complex, involving interactions between multiple mediators and angiotensin receptors.29–31 As observed for KKS, the kidney is also an important source of RAS mediators. Regarding angiotensin receptors, AT1 receptors are present in the whole kidney, mostly in cortical sites, and AT2 receptors are present in glomeruli and distal tubules.31 Moreover, there is evidence for the existence of other angiotensin receptors, which specifically mediate some of the renal effects of Ang-(1-7) and Ang IV.1,29,30

Figure 1. Simplified illustration of the proteolytic pathways for the formation of biologically active angiotensin peptides. ACE indicates angiotensin-converting enzyme; ACE 2, ACE-related carboxypeptidase; PEP, prolylendopeptidase; NEP, neutral endopeptidase; and CBP, carboxypeptidase.
The interactions between Ang-(1-7) and Ang II at the renal level are poorly understood. As suggested for vascular actions, it has been proposed that Ang-(1-7) could be a physiological antagonist of Ang II at the renal level. So, Ang-(1-7) may produce natriuresis and diuresis, opposing the actions of Ang II mediated through AT1 receptors. The first evidence for an interaction between Ang-(1-7) and Ang II comes from the renal system. 

The interactions between Ang-(1-7) and Ang II are mediated at least in part by an AT1 receptor, other studies have pointed out that this receptor seems to be also present in the glomerulus. These findings suggest that AT1-like receptors, sensitive to both Ang-(1-7) and losartan, may play a role in the renal effects of Ang-(1-7) and possibly of Ang II.

The interactions between Ang-(1-7) and Ang II at the renal level are poorly understood. As suggested for vascular actions, it has been proposed that Ang-(1-7) could be a physiological antagonist of Ang II at the renal level. So, Ang-(1-7) may produce natriuresis and diuresis, opposing the actions of Ang II mediated through AT1 receptors. The first evidence for an interaction between Ang-(1-7) and Ang II comes from the renal system.

The interactions between Ang-(1-7) and Ang II are mediated at least in part by an AT1 receptor, other studies have pointed out that this receptor seems to be also present in the glomerulus. These findings suggest that AT1-like receptors, sensitive to both Ang-(1-7) and losartan, may play a role in the renal effects of Ang-(1-7) and possibly of Ang II.

The interactions between Ang-(1-7) and Ang II at the renal level are poorly understood. As suggested for vascular actions, it has been proposed that Ang-(1-7) could be a physiological antagonist of Ang II at the renal level. So, Ang-(1-7) may produce natriuresis and diuresis, opposing the actions of Ang II mediated through AT1 receptors. The first evidence for an interaction between Ang-(1-7) and Ang II comes from the renal system.

The interactions between Ang-(1-7) and Ang II are mediated at least in part by an AT1 receptor, other studies have pointed out that this receptor seems to be also present in the glomerulus. These findings suggest that AT1-like receptors, sensitive to both Ang-(1-7) and losartan, may play a role in the renal effects of Ang-(1-7) and possibly of Ang II.

The interactions between Ang-(1-7) and Ang II at the renal level are poorly understood. As suggested for vascular actions, it has been proposed that Ang-(1-7) could be a physiological antagonist of Ang II at the renal level. So, Ang-(1-7) may produce natriuresis and diuresis, opposing the actions of Ang II mediated through AT1 receptors. The first evidence for an interaction between Ang-(1-7) and Ang II comes from the renal system.

The interactions between Ang-(1-7) and Ang II are mediated at least in part by an AT1 receptor, other studies have pointed out that this receptor seems to be also present in the glomerulus. These findings suggest that AT1-like receptors, sensitive to both Ang-(1-7) and losartan, may play a role in the renal effects of Ang-(1-7) and possibly of Ang II.

The interactions between Ang-(1-7) and Ang II at the renal level are poorly understood. As suggested for vascular actions, it has been proposed that Ang-(1-7) could be a physiological antagonist of Ang II at the renal level. So, Ang-(1-7) may produce natriuresis and diuresis, opposing the actions of Ang II mediated through AT1 receptors. The first evidence for an interaction between Ang-(1-7) and Ang II comes from the renal system.

The interactions between Ang-(1-7) and Ang II are mediated at least in part by an AT1 receptor, other studies have pointed out that this receptor seems to be also present in the glomerulus. These findings suggest that AT1-like receptors, sensitive to both Ang-(1-7) and losartan, may play a role in the renal effects of Ang-(1-7) and possibly of Ang II.
inhibition of the contractile effect of Ang II in the rabbit aorta by the Ang-(1-7) analogue Sar\(^1\)-Ang-(1-7). Further studies have confirmed the ability of Ang-(1-7) to antagonize the vascular effects of Ang II.\(^{42-44}\) Of special interest are the recent descriptions of antagonism by Ang-(1-7) of the vascular actions of Ang II in human isolated blood vessels\(^{44}\) and in the forearm vascular bed.\(^{43}\) Most of the evidence points to a direct interaction of Ang-(1-7) with AT\(_1\) receptors in conveying this antagonistic action.\(^{42-44}\) Indeed, when used at high concentrations, Ang-(1-7) can produce Ang II-like effects.\(^{15,14}\) These actions can be explained by low affinity binding of Ang-(1-7) to AT\(_1\) receptors.\(^{48}\) Alternatively, Ang-(1-7), binding to its specific receptors and/or to AT\(_2\) receptors, can interfere with extracellular Ca\(^{2+}\) influx into smooth muscle cells, as recently proposed for mesangial cells.\(^{46}\)

Although Ang-(1-7) has been described as a peptide capable of releasing prostaglandins\(^{42,47}\) and NO\(^{9,14}\) these mechanisms are less likely to contribute to its attenuating effect on the Ang II actions.\(^{42,44}\) This reasoning is mostly based on the absence of an Ang-(1-7) effect on the vasoconstrictor action of \(\alpha\)-adrenergic drugs in vitro\(^{42}\) or in the human forearm.\(^{43}\) Release of NO and/or prostaglandins would be expected to nonspecifically reduce vasoconstriction.

In addition to a direct or indirect interaction with AT\(_1\) and perhaps AT\(_2\) receptors, Ang-(1-7) appears to be able to influence the synthesis of Ang II receptors at the mRNA level. A short-term infusion of Ang-(1-7) increased mRNA levels for AT\(_1\) and AT\(_2\) receptors in the kidney of ovine level. A short-term infusion of Ang-(1-7) increased mRNA influence the synthesis of Ang II receptors at the mRNA level. A short-term infusion of Ang-(1-7) increased mRNA levels for AT\(_1\) and AT\(_2\) receptors in the kidney of ovine level. A short-term infusion of Ang-(1-7) increased mRNA levels for AT\(_1\) and AT\(_2\) receptors in the kidney of ovine level. A short-term infusion of Ang-(1-7) increased mRNA.


Interactions Between Angiotensin-(1-7), Kinins, and Angiotensin II in Kidney and Blood Vessels

Robson Augusto Souza dos Santos, Kátia Tomagnini Passaglio, João Bosco Pesquero, Michael Bader and Ana Cristina Simões e Silva

Hypertension. 2001;38:660-664
doi: 10.1161/01.HYP.38.3.660

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/38/3/660

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/