Relation of Cellular Potassium to Other Mineral Ions in Hypertension and Diabetes

Lawrence M. Resnick, Mario Barbagallo, Ligia J. Dominguez, Joseph M. Veniero, J.P. Nicholson, Raj K. Gupta

Abstract—To investigate the role of intracellular potassium (Ki) and other ions in hypertension and diabetes, we utilized 39K-, 23Na-, 31P-, and 19F-nuclear magnetic resonance (NMR) spectroscopy to measure Ki, intracellular sodium (Nai), intracellular free magnesium (Mgi), and cytosolic free calcium (Ca2+) respectively, in red blood cells of fasting normotensive nondiabetic control subjects (n=10), untreated (n=13) and treated (n=14) essential hypertensive subjects, and diabetic subjects (n=5). In 12 subjects (6 hypertensive and 6 normotensive controls), ions were also measured before and after the acute infusion of 1 L of normal saline. Compared with those in controls (Ki=148±2.0 mmol/L), Ki levels were significantly lower in hypertensive (132.2±2.9 mmol/L, sig=0.05) and in type 2 diabetic subjects (121.2±6.8 mmol/L, sig=0.05). Ki was higher in treated hypertensives than in untreated hypotensives (139±3.1 mmol/L, sig=0.05) but was still lower than in normals. Although no significant relation was observed between basal Ki and Nai values, saline infusion elevated Nai (P<0.01) and reciprocally suppressed Ki levels (142±2.4 to 131±2.2 mmol/L, P<0.01). Ki was strongly and inversely related to Ca2+ (r=−0.846, P<0.001), and was directly related to Mgi (r=0.664, P<0.001). We conclude that (1) Ki depletion is a common feature of essential hypertension and type 2 diabetes, (2) treatment of hypertension at least partially restores Ki levels toward normal, and (3) fasting steady-state Ki levels are closely linked to Ca2+ and Mgi homeostasis. Altogether, these results emphasize the similar and coordinate nature of ionic defects in diabetes and hypertension and suggest that their interpretation requires an understanding of their interaction. (Hypertension. 2001;38[part 2]:709-712.)

Key Words: potassium ■ diabetes ■ calcium ■ magnetic resonance spectroscopy ■ hypertension

Cellular responses to a variety of stimuli depend on the maintenance of normal intracellular potassium (Ki) stores, which determine the state of cell membrane potential.1 Ki homeostasis is also linked to intracellular sodium (Nai), calcium (Ca2+), and magnesium (Mgi) metabolism, via Na+-K+-ATPase, Ca2+-activated K channels, and other mechanisms.2-4 Thus, thepressor response to dietary salt loading, associated with increases in Nai and Ca2+ and depletion of Mgi,5 is blunted by increased K intake.6 Dietary K intake has also been linked with the cerebrovascular disease risk associated with aging and hypertension.7,8 The hypothesis emerging from these and other studies, that a cellular K deficiency directly contributes to hypertension-associated diseases, has been tested by measuring Ki or surrogate (rubidium) ion flux rates, membrane-related enzyme ion pump activities, and Ki, although often in broken cell preparations or in cells suspended in artificial media before analysis.9-12

We have utilized nuclear magnetic resonance (NMR) spectroscopic techniques to noninvasively assess steady-state intracellular ion concentrations under conditions that closely represent their native environment.13-17 In this study, we measured Ki levels in erythrocytes of normal, essential hypertensive, and diabetic subjects, and compared these levels to concomitant levels of other intracellular mineral ions. Our results support the hypothesis that a cellular deficiency of Ki exists in essential hypertension and in type 2 diabetes mellitus. Furthermore, our data demonstrate close relationships between Ki and levels of other ions measured concomitantly, thus emphasizing the coordinate nature of intracellular ion homeostasis.

Methods

Patients

All subjects were recruited at the Hypertension Center of the New York Presbyterian Hospital–Cornell Medical Center. Normotensives (NI, n=10) were recruited from an epidemiologic study of a normal population (NIH-SCOR). Unmedicated essential hypertensive subjects (HiBP, n=13) were diagnosed on the basis of 3 independent BP readings >150/95 mm Hg, of being off all medications for ≥3 weeks, and of the absence of any history, physical examination, or laboratory evidence of secondary hypertension. Medicated hyperten-
sive subjects (HiBP-Rx, n = 14) with normal BP values were also studied. Medications included dihydropropyridine calcium antagonists (n = 7), ACE inhibitors (n = 5), β-blockers (n = 4), α-blockers (n = 1), and diuretics (n = 1). Five NI subjects had fasting hyperglycemia (fasting blood sugar = 8.7 ± 0.6 mmol/L) on 2 separate occasions and were considered a subgroup with new-onset type 2 diabetes mellitus.

Heparinized blood was drawn in quietly seated patients who arrived between 9:00 and 10:00 AM after an overnight fast. In some subjects, additional blood was also drawn for measurement of Ca, and/or Mg content. In a separate group of 12 fasting unmedicated HiBP and NI subjects (6 hypertensive and 6 normotensive, 9 male/3 female) participating in a saline infusion protocol, blood for Na and K ion measurements was drawn before and 30 minutes after infusion of 1000 mL of 0.9% NaCl. All intracellular ion analyses were performed at the Albert Einstein College of Medicine.

Intracellular Na

Ten milliliters of blood was mixed with the paramagnetic shift reagent, dysprosium bis(tripolyphosphate) (Dy[PPP])$^{3-}$, to a concentration of 5 mmol/L and then spun at 2000 rpm for 10 minutes; the plasma and cells were put into separate 10-mm NMR tubes.

Intracellular K

K^+ spectra were obtained on the same sample of packed erythrocytes used for the Na determination, using a K^+-NMR probe on a Varian VXR-500 spectrometer operating at 23.3 MHz. Integration of the K^+ resonance and comparison of this area to that of a standard K^+ reference (150 mmol/L) allows for the calculation of K_i, $K_i = [K^+][I]_o / [A_i][A_o]_o (1/[I]_o)$, where A_o and A_o are the areas of the intracellular and extracellular resonances, respectively, S_o is the fractional extracellular volume (A_o/A_o), and $[I]_o$ is the plasma Na concentration, obtained independently by standard techniques.

Cytosolic Free Calcium

Ten milliliters of blood was spun at 10 000 rpm for 10 minutes, and the plasma was removed and saved. The packed cells were loaded for 20 minutes at 37°C with 20 μmol/L QUIN-MF in 100 mL of Hank’s balanced salt solution (HBSS) titrated with NaHCO3 to a pH of 7.4, and [Na$_i$]$_{std}$ = ([Na$_i$]$_{in}$/[A$_i$]/[A$_o$]$_{std}$(1/[S$_o$]$_{std}$)), where A_o and A_o are the areas of the intracellular and extracellular resonances, respectively, S_o is the fractional extracellular volume as determined for the calculation of Na$_i$.

Intracellular Free Magnesium

Heparinized blood was centrifuged, and the packed cells decanted into 10-mm NMR tubes for analysis. All spectra were obtained on a Varian XL-200 spectrometer, operating at 37°C. Mg$_i$ levels were determined according to the formula: Mg$_i$ = [Mg$_{ATP}$]/$[A_i]_o (1/[S_o]_o)$, where A_o the free unbound fraction of ATP, is calculated from the chemical shift differences of the α- and β-phosphoryl resonances of ATP in the 31P-NMR spectrum, and K$_d$(MgATP) = 38 μmol/L at 37°C.

<table>
<thead>
<tr>
<th>Characteristics of Study Subjects</th>
<th>NI (n = 10)</th>
<th>HiBP (n = 13)</th>
<th>HiBP-Rx (n = 14)</th>
<th>Type 2 Diabetes (n = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>57 ± 6</td>
<td>56 ± 6</td>
<td>54 ± 2</td>
<td>62 ± 6</td>
</tr>
<tr>
<td>Gender, M/F</td>
<td>5/5</td>
<td>4/9</td>
<td>5/9</td>
<td>2/3</td>
</tr>
<tr>
<td>Race, B/W</td>
<td>2/8</td>
<td>3/10</td>
<td>3/11</td>
<td>0/5</td>
</tr>
<tr>
<td>BMI, kg/m2</td>
<td>27.8 ± 3.1</td>
<td>28.9 ± 2.2</td>
<td>30.0 ± 3.4</td>
<td>29.1 ± 3.0</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>132 ± 6</td>
<td>162 ± 6a</td>
<td>138 ± 7</td>
<td>134 ± 6</td>
</tr>
<tr>
<td>DBP, mm Hg</td>
<td>73 ± 3</td>
<td>99 ± 3a</td>
<td>81 ± 3a</td>
<td>77 ± 2</td>
</tr>
<tr>
<td>Cr, mg/dL</td>
<td>0.8 ± 0.05</td>
<td>0.9 ± 0.07</td>
<td>1.0 ± 0.07</td>
<td>0.9 ± 0.009</td>
</tr>
<tr>
<td>K$_i$, mmol/L</td>
<td>148 ± 2</td>
<td>132 ± 2.9a</td>
<td>139 ± 3.1a</td>
<td>121.2 ± 6.8a</td>
</tr>
<tr>
<td>Na$_i$, mmol/L</td>
<td>9.7 ± 0.8</td>
<td>9.0 ± 0.8</td>
<td>9.8 ± 0.9</td>
<td>9.2 ± 1.5</td>
</tr>
</tbody>
</table>

aP < 0.05 vs NI.

bP < 0.05 vs HiBP-No Rx.

Statistical Analysis

K$_i$ and Na$_i$ values obtained from the different patient groups were analyzed and compared using 1-way ANOVA, with post-hoc t tests adjusted for multiple comparisons (Bonferroni). Paired t tests were used to compare K$_i$ and Na$_i$ values before and 30 minutes after the intravenous NaCl infusion. When Na$_i$, Ca, and/or Mg were measured concomitantly, the relation between these ions and K$_i$ values were analyzed using linear regression analysis and Pearson correlation coefficients. Results are expressed as mean ± SEM.

Results

The patient groups analyzed did not differ in average age, gender, or racial distribution; BMI; or renal function (Table). Systolic BP was significantly higher in the unmedicated essential hypertensive group but did not differ significantly among the other patient groups studied, whereas for diastolic BP a small but significantly difference was also present in the hypertensive treated patients compared with the normotensive controls (Table).

Steady-state fasting K$_i$ and Na$_i$ levels in normal untreated and treated hypertensive subjects and in diabetic subjects are displayed in the Table. Basal K$_i$, but not Na$_i$, values were significantly different among the groups. K$_i$ in normal subjects averaged 148 ± 2.0 mmol/L; in unmedicated hypertensives, 132 ± 22.9 mmol/L (sig < 0.05 versus NI); and in treated hypertensives, 139 ± 3.1 mmol/L (sig < 0.05 versus HiBP and NI). The type 2 diabetic subjects had the lowest K$_i$ values: 121 ± 6.8 mmol/L (sig < 0.05 versus NI). BP was significantly related to K$_i$ levels in nondiabetic subjects (systolic BP: r = −0.537, P < 0.01; diastolic BP: r = −0.569, P < 0.01).

In 15 of the NI and HiBP subjects in whom Ca$_i$ and K$_i$ were measured concurrently, a close inverse relationship between them was observed (r = −0.846, P < 0.001) (Figure 1a). Conversely, a positive relationship was observed between Mg$_i$ and K$_i$ levels (r = 0.664, P < 0.001) in the 19 subjects in whom both these measurements were made (Figure 1b).

Although there was no steady state relation between fasting K$_i$ and Na$_i$ levels, these 2 mineral species were closely linked dynamically in subjects undergoing the NaCl infusion. Specifically, as shown in Figure 2, acute saline infusion elevated Na$_i$ levels in all the subjects (10.1 ± 1.5 to 12.8 ± 1.7 mmol/L, P < 0.01), whereas K$_i$ was reciprocally suppressed (142 ± 2.4
to 131±2.2 mmol/L, *P*<0.01). Kᵢ before and after NaCl infusion was quantitatively related to the concomitantly obtained Naᵢ levels (*r* = 0.736, *P* < 0.001). These results were consistent among all the subjects studied, independently of blood pressure or gender status.

Discussion

Epidemiologic data suggest that dietary intakes of NaCl, K⁺, Ca²⁺, and Mg²⁺ may all contribute to hypertension and its consequences.⁸,¹⁹–²² Conversely, hypertension is ameliorated by increasing K⁺, Ca²⁺, and Mg²⁺ or by decreasing NaCl intake.²³–²⁶ Presumably, these dietary alterations influence ionic events at the cellular level, leading to altered tissue function, but this has been difficult to determine because previous measurements of steady state cellular ion content of, eg, K⁺, often required cell suspension in artificial media, the use of chelating agents that distribute not only into cytosol but into other cell compartments as well, or even the disruption of cell membranes. Furthermore, focusing on single ions rather than on their mutual interaction often leads to artificial controversies in which K⁺, Na⁺, Ca²⁺, and Mg²⁺ have each been claimed as the "most" important ionic determinant of pathologic processes such as hypertension.

Our group has developed NMR spectroscopic techniques to noninvasively and coordinately analyze steady-state cellular ion content.¹³–¹⁷ Although limited by the greater time course and amounts of tissue required for analysis, NMR techniques possess certain advantages, including greater precision and reproducibility and a closer preservation of the native extracellular environment in which the analyses are performed. Utilizing these NMR techniques in the present study, we found the following: (1) compared with normotensive subjects, fasting Kᵢ levels are significantly lower in red cells obtained from untreated human essential hypertensive subjects; (2) in normotensive and hypertensive subjects, BP is inversely related to Kᵢ content—the lower the Kᵢ, the higher the pressure; (3) medicated hypertensives exhibited significantly higher Kᵢ levels compared with those of untreated hypertensive subjects; and (4) untreated type 2 diabetic subjects exhibit a greater degree of Kᵢ depletion. Furthermore, (5) Kᵢ levels are closely linked to levels of other intracellular ions. Specifically, steady-state fasting Caᵢ and Mgᵢ levels are, respectively, inversely and directly related to Kᵢ—the higher the Kᵢ, the lower the Caᵢ (Figure 1A) and the higher the Mgᵢ (Figure 1B). Lastly, (6) although no basal relation was observed between Kᵢ and Naᵢ levels, they were closely and inversely linked during NaCl infusion, where Naᵢ rose and Kᵢ reciprocally fell (Figure 2). Altogether, these data document deficient Kᵢ levels in hypertension and diabetes, demonstrate the relationship between monovalent and divalent cellular cations, and emphasize the need to interpret studies of cellular ion content accordingly.

What might be the possible pathophysiologic significance of these findings? First, although our data, obtained in red blood cells, need to be confirmed in other tissues, such as vascular smooth muscle (VSM), the depletion of cellular Kᵢ or Mgᵢ, and/or the Caᵢ excess can each directly produce or predispose to VSM contraction, increased constrictor tone, increased BP,²⁷–²⁸ insulin resistance, and abnormalities of glucose and insulin metabolism.²⁸–³¹ Thus, although the causal mechanisms of these ionic changes have yet to be defined, the observation here of Kᵢ depletion in hypertension and diabetes and its strong linkage with Mgᵢ and Caᵢ levels further supports the notion of increased vasoconstrictor tone and insulin resistance as different tissue manifestations of a common cellular ionic defect. Indeed, cellular depletion of Kᵢ and Mgᵢ is associated with elevated blood lipid levels, atherosclerosis,³² altered endothelial function, and decreased biosynthesis and release of NO.³³ Second, the coordinate nature of these cellular ionic lesions—ie, abnormal levels of any 1 ion reflecting linked abnormalities of others—suggests the somewhat artificial nature of controversies arising out of claims that 1 particular cellular ionic species is more important than another. It may be rather, that independently of the nature of the initial lesion, which might differ in different genetically or environmentally determined forms of hypertension and/or diabetes (and which may or may not involve...
primary ion-related events), that the alterations of cellular ion content observed here participate in a final common pathway necessary for the emergence of the insulin resistant and/or hypertensive state. At the very least, our results confirm the involvement of deficient K+ in hypertension and diabetes, emphasize the interaction and interdependency of K+, Mg2+, and Ca2+, and suggest that in the future, proper interpretation of cellular events in these disease states warrants their concomitant measurement.

Acknowledgment

This work was supported in part by National Institutes of Health grant DK 32030-13 (R.K.G.).

References

Relation of Cellular Potassium to Other Mineral Ions in Hypertension and Diabetes
Lawrence M. Resnick, Mario Barbagallo, Ligia J. Dominguez, Joseph M. Veniero, J. P. Nicholson and Raj K. Gupta

Hypertension. 2001;38:709-712
doi: 10.1161/01.HYP.38.3.709

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/38/3/709

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Hypertension_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Hypertension_ is online at:
http://hyper.ahajournals.org//subscriptions/