Role of the α_{1D}-Adrenergic Receptor in the Development of Salt-Induced Hypertension

Akito Tanoue, Masahiro Koba, Shigeki Miyawaki, Taka-aki Koshimizu, Chihiro Hosoda, Sayuri Oshikawa, Gozoh Tsujimoto

Abstract—In an attempt to elucidate whether there is a specific α_1-adrenergic receptor (α_1-AR) subtype involved in the genesis or maintenance of hypertension, the α_{1D}-AR subtype was evaluated in a model of salt-induced hypertension. The α_{1D}-AR–deficient ($\alpha_{1D}^{-/-}$) and control ($\alpha_{1D}^{-/+}$) mice (n=8 to 14 in each group) were submitted to subtotal nephrectomy and given 1% saline as drinking water for 35 days. Blood pressure (BP) was monitored by tail-cuff readings and confirmed at the end point by direct intrarterial BP recording. The $\alpha_{1D}^{-/-}$ mice had a significantly ($P=0.0004$) attenuated increase in BP response in this protocol (baseline 94.6±2.8 versus end point 107.4±4.5 mm Hg) compared with that of their wild-type counterparts ($\alpha_{1D}^{+/+}$), from a baseline 97.4±2.9 to an end point 139.4±4.5 mm Hg. Seven of 15 $\alpha_{1D}^{+/+}$ mice died with edema, probably owing to renal failure, whereas 14 of 15 $\alpha_{1D}^{-/-}$ mice were maintained for 35 days. Body weight, renal remnant weight, and residual renal function were similar in the 2 groups, whereas the values of plasma catecholamines (epinephrine, norepinephrine, and dopamine) were higher in $\alpha_{1D}^{+/+}$ than in the $\alpha_{1D}^{-/-}$ mice. These data suggest that α_{1D}-AR plays an important role in developing a high BP in response to dietary salt-loading, and that agents having selective α_{1D}-AR antagonism could have significant therapeutic potential in the treatment of hypertension. (Hypertension. 2002;40:101-106.)

Key Words: receptors, adrenergic ■ mice ■ hypertension, sodium-dependent ■ nephrectomy

Hypertension is a disease characterized by an increase in peripheral vascular resistance.1,2 Despite the great amount of research on the subject, the specific events that lead to the development of high blood pressure (BP) are not known. However, at the vascular level, 2 factors seem to be involved in the pathogenesis of this condition: (1) structural changes in blood vessel walls and (2) hypersensitivity of blood vessels to vasoconstrictor stimuli.3–6 Structural changes could represent an adaptive phenomenon in which the arterial wall thickens in response to an increase in BP.5 Consequently, hypertension predisposes the individual to the cardiovascular diseases, renal failure, and stroke.7 Hyperreactivity of vascular smooth muscle to adrenergic stimulation has been suggested as a major cause for the increase and maintenance of BP in animal models such as spontaneously hypertensive rats (SHR) and deoxycorticosterone acetate (DOCA)–salt hypertensive rats.3,6,8,9

Catecholamines cause vascular smooth muscle contraction by activating α_1-adrenergic receptors (α_1-ARs), and drugs that block α_1-ARs lead to a fall in peripheral vascular resistance and in venous return to the heart and in BP. Three subtypes of α_1-AR (α_{1A}, α_{1B}, and α_{1D}) have been isolated and shown to share a high degree of structural similarity (50% to 60% amino acid identity). All of these receptors couple to Ca$^{2+}$ signaling, leading to muscle contraction.10 Although the 3 α_1-ARs differ in their patterns of tissue expression, little is known about the pathophysiological role of each α_1-AR subtype. Among the 3 subtypes, the α_{1D}-AR has been implicated in mediating contraction of the aorta and superior mesenteric arteries of human,11 mouse,12–14 and rats,15–17 suggesting that this receptor may be important in the regulation of peripheral vascular tone in vivo. We have recently shown that α_{1D}-AR regulates BP via vasoconstriction with α_{1D}-AR–deficient mice.14 Also, vascular α_{1D}-AR has been suggested to be related to the pathogenesis/maintenance of hypertension related to aging and SHR.18,19

Subtotal nephrectomy is a long-accepted experimental procedure20 that has been used over the years to accentuate salt-induced hypertension equivalent to that accompanying human chronic renal failure. The mechanisms by which salt-loading increases BP are still incompletely understood, but increasing evidence suggests that a neurogenic mechanism is involved in an early interaction between vasopressinergic and adrenergic neurons in the central nervous system (CNS). This then leads to a subsequent persistent hyperadrenergic state.21 Previous experimental efforts have been focused
on the α_2-AR as an important sympathetic component in this interaction, whereas much less attention has been paid to the role of the α_1-AR. To assess the functional roles of α_{1D}-AR subtypes in salt-induced hypertension, genetically altered mice lacking the α_{1D}-AR were examined by a dietary salt-loading study that was initiated after subtotal nephrectomy.

Methods

Animals
Two groups of male mice, age 7 to 9 weeks and weighing 23.2 to 28.2 g, were used in the present study. Homozygous ($\alpha_{1D}^{-/-}$) knockout mice for the α_{1D}-AR subtype with the genetic background of 129Sv and C57Black6/J strains were used, along with their wild-type controls ($\alpha_{1D}^{+/+}$), which were littermates of the $\alpha_{1D}^{-/-}$ mice. All mice were housed in the animal quarters with a 12-hour light/dark cycle and were provided food and distilled water ad libitum. After subtotal nephrectomy, drinking water was replaced with 1% saline. All experiments were conducted in accordance with guidelines for the care and use of animals approved by the National Center for Child Health and Development Research Institute.

Animal Genotyping
Inactivation of the α_{1D}-AR gene involved insertion of the PGK-Neo cassette. Genotypes were determined from DNA isolated from the tail using the following primers: α_{1D}^{1521}R (CAGCTGCACCTAG-TAGCAAGGTCA), α_{1D}^{1239}F (CCGTCATTGTGGAACCG-GCACCG), and Neo-2401-F (CCTACAATTGGAATGGAG-GATTG) were used to detect the intact (282 bp) or interrupted (637 bp) α_{1D}-AR gene. The α_{1D}^{1521}R primer was located within the first exon of the α_{1D}-AR gene, and the α_{1D}^{1239}F primer was within the region of the first exon replaced with the Neo in the mutant allele. The Neo-2401-F primer was within the Neo gene. Each sample contained the upstream and downstream primers (10 pmol each), 0.25 mmol/L of each dNTP, 50 mmol/L KCl, 10 mmol/L Tris-HCl pH 8.6, 1.5 mmol/L MgCl$_2$, and 2.5 U of Taq DNA polymerase (Takara Shuzo Co). Thermal cycling was performed for 1 minute at 94°C, 1 minute at 56°C, and 2 minutes at 72°C for 30 cycles. Bands were separated on 2% agarose gels.

Subtotal Nephrectomy and BP Monitoring
Mice (n=15 in each group) were submitted to subtotal nephrectomy and handled as described. Briefly, both poles of the left kidney were excised under anesthesia with intraperitoneal sodium pentobarbital (50 mg/kg), leaving a small amount of residual renal tissue around the hilum and preserving the ureter and hilar vessels. The excised renal tissues were weighed, and the ratios of these organs to the body weight were calculated individually. After a 7-day recovery period, the right kidney was removed, leaving 25% of the total renal mass. Twenty-four hours after the second operation, the animals were placed and maintained on 1% saline as drinking water for 35 days.

Tail-cuff systolic BP (SBP) and heart rate (HR) measurements were obtained by use of a computerized tail-cuff system (BA-98A system, Softron Co) as described elsewhere. Mice were monitored for 35 days or until they became hypotensive; i.e., their tail-cuff SBP reached 150 mm Hg, or an increase of >40 mm Hg above baseline was recorded and sustained for 3 consecutive days. BP measurements of the last 3 days were averaged, and the resulting mean value was considered the end point tail-cuff BP for the animal. For animals that failed to develop hypertension as defined above during the 35-day period, the end point tail-cuff BP was calculated by averaging the measurements recorded for the last 3 days. The end point tail-cuff BP was confirmed by direct measurement via arterial catheterization at the end of the study, as described previously.

Measurement of Plasma Catecholamines and Creatinine
Blood was drawn slowly from the arterial line and used for measuring plasma catecholamine levels (epinephrine, norepinephrine, and dopamine) and creatinine levels. Catecholamine levels were determined by high-pressure liquid chromatography using commercially available reagents (Tosho Co) as described elsewhere. Plasma creatinine was determined by use of a commercially available colorimetric kit from Sigma Diagnostics.

Statistical Analysis
All values are expressed as mean±SEM. *P*<0.05 according to a Student’s *t* test was considered statistically significant. Cumulative survival curves were constructed by the Kaplan-Meier method, and difference between the curves was tested for significance with the use of the log-rank statistic.

Results

General
Fifteen mice from each group were submitted to subtotal nephrectomy and 1% saline loading. Four of the 15 $\alpha_{1D}^{+/+}$ mice died with general edema within 4 days without an appreciable change in BP, and 3 of the $\alpha_{1D}^{-/-}$ mice died with general edema and hypertension (139 to 145 mm Hg, >40 mm Hg from the baseline) at the seventh, 12th, and 35th day, respectively. All $\alpha_{1D}^{-/-}$ mice were maintained for 35 days, except 1 mouse that died on the 26th day after nephrectomy, during handling for the tail-cuff monitoring, without an appreciable change in BP (Figure 1). At the 35th day, the Kaplan-Meier analysis detected a favorable effect of $\alpha_{1D}^{-/-}$ gene ablation on cumulative survival. The difference in survival rates calculated by log-rank test was significantly better in the mutant mice group (53% for $\alpha_{1D}^{+/+}$ and 93% for $\alpha_{1D}^{-/-}$; *P*=0.0121).

No significant differences were observed between genetically altered mice and their controls in regard to body weight at baseline and end point, ratios of excised or remnant kidney weight to body weight at the end point, and ratios of heart weight to body weight at the end point.

![Figure 1](image-url)
weight to body weight at the end point. There were also no differences in plasma creatinine levels (Table), indicating that the residual renal function after subtotal nephrectomy was similar in the 2 groups and within a normal range, compared with another report. Plasma creatinine levels and ratios of heart weight to body weight in both groups were significantly (P<0.05) increased compared with those of controls that did not undergo salt-loading (creatinine: 7.25±0.05 μmol/L in α1D−/−, n=8, 7.07±0.05 μmol/L in α1D+/−, n=12; heart-weight/body-weight ratio: 4.62±0.31 mg/g, in α1D+/−, n=8, 4.82±0.23 mg/g, in α1D−/−, n=12), indicating that this kind of salt loading could affect the renal or cardiac functions.

Tail-Cuff Measurements

Figure 2 shows the time course of tail-cuff HR and SBP changes during the 1% saline drinking period after subtotal nephrectomy in the 2 groups. Figure 2A shows HR changes and shows that in both groups, HR did not differ and significantly increased compared with the baseline (baseline versus end point: 557±23 bpm and 629±26 bpm in α1D+/−, n=8, P=0.041 and 502±23 bpm and 597±16 bpm, in α1D−/−, n=14, P=0.0004). On the other hand, Figure 2B shows SBP changes in the α1D+/− (n=8) and the α1D−/− (n=14) mice and shows that SBP in the α1D+/− mice increased significantly by the end of the 35-day period, whereas that in the α1D−/− mice did not change significantly. Hypertension, as defined in the Methods section, developed within 3 weeks on average in the α1D+/− mice, not including the 7 mice that died. Only 2 out of 14 α1D−/− mice that survived developed hypertension (their SBP reached 150 mm Hg), whereas 6 out of 8 surviving α1D+/− mice developed hypertension (2 SBPs were increased >40 mm Hg from the baseline, and 4 reached 150 mm Hg).

Figure 3 summarizes BP and HR measurements of 2 groups of mice at the baseline and end point. Figure 3A shows that there was no difference in baseline SBP (ie, before surgery) between the α1D−/− (n=14) and control α1D+/+ (n=8) mice (97.4±2.8 mm Hg and 94.6±2.9 mm Hg in α1D+/+ and α1D−/− mice, respectively, P=0.46). However, an attenuated hypertensive response to subtotal nephrectomy and salt loading was observed in the α1D−/− mice, resulting in a significantly lower end point SBP compared with that of their wild-type controls (139.4±4.5 mm Hg and 107.4±4.5 mm Hg in α1D+/+ and α1D−/− mice, respectively, P=0.0004) (Figure 3B). Figure 3D and 3E present mean tail-cuff HR measurements for the 2 groups. Tail-cuff HR levels at baseline and end point tended to be somewhat higher in the α1D−/− (n=8) than in the α1D+/+ mice (n=14), but these differences were not significant. A significant increase in tail-cuff HR relative to baseline was observed in both groups after subtotal nephrectomy and 1% saline loading (according to a paired t test).

Intraarterial BP and HR Measurements

The end point direct mean arterial pressure (MAP) and HR measurements for each group are shown in Figure 3C and 3F. Consistent with the end point tail-cuff BP measurements, direct MAP was significantly lower in the α1D−/− (n=14) group compared with the α1D+/− mice (n=8) (124.1±7.6 mm Hg in the α1D−/− versus 161.9±6.8 mm Hg in the α1D+/− mice; P=0.016). Comparison of end point tail-cuff SBP measurements with direct MAP values showed that direct MAP values were higher than tail-cuff SBP measurements. Direct HR tended to be higher in the α1D+/+ mice, but this difference was not significant (565±46 bpm in the α1D+/+ versus 634±18 bpm in the α1D−/− mice; P=0.14).
Figure 3. BP and HR at the baseline and end point for each group of mice. Tail-cuff BP at baseline (A) and end point (B), and tail-cuff HR at baseline (D) and end point (E) for each group of mice. Direct intraarterial MAP (C) and HR (F) at the end point are indicated. Open bars denote wild-type (α1D+/−) mice; closed bars denote the α1D-AR–deficient (α1D−/−) mice. *P<.05 α1D−/− vs α1D+/− mice.

Catecholamines Levels

Plasma catecholamine levels for both groups are shown in the Table. Plasma catecholamines for both groups increased after salt loading compared with those measured in α1D+/− or α1D−/− mice without salt loading (basal levels of plasma total catecholamines; 31.05±2.82 nmol/L in α1D+/−, 27.43±4.57 nmol/L, in α1D−/−). Plasma epinephrine levels tended to be higher in α1D+/− (n=8) than in the α1D−/− mice (n=14), but this difference was not significant. Norepinephrine, dopamine, and total catecholamine levels were significantly higher in α1D+/− (n=8) than in the α1D−/− mice (n=14).

Discussion

The functional role of the α1D-AR subtype in the development of high BP was investigated using a model of salt-induced hypertension. One percent saline was given as drinking water to mice genetically lacking α1D-AR after subtotal nephrectomy. The α1D−/− mice had a significantly attenuated increase in MAP compared with that of α1D+/− mice. The present study provides clear evidence that α1D-AR plays an important role in developing high BP in response to dietary salt loading. In addition to our observations, several reports support the idea that α1D-AR could be involved in the pathogenesis and/or maintenance of hypertension.19,27–30

We observed that 7 α1D−/− mice died with general edema during 1% saline drinking after subtotal nephrectomy, whereas only 1 α1D+/− mouse died in the same period. This might suggest that α1D−/− mice are less susceptible to acute renal failure caused by subtotal nephrectomy followed by 1% saline drinking. As the amount of excised kidney in the dead α1D−/− mice was comparable to that in surviving α1D+/− mice (the ratio of excised kidney weight to body weight was 3.31±0.02 mg/g in surviving mice, n=8, and 3.33±0.04 mg/g in dead mice, n=7), our view is that the lesser amount of remaining kidney was not the direct cause of death. Although the exact reason for the different death rates is uncertain, the present study clearly shows that the lack of α1D-AR leads to a better prognosis.

Interestingly, relative heart weights significantly increased even in the α1D−/− mice without hypertension. It is generally accepted that cardiac hypertrophy develops in response to increased cardiac workload as a compensatory mechanism. Various factors, including mechanical and biochemical ones, are involved in the development of cardiac hypertrophy.31 As the α1D−/− mice did not develop hypertension by salt loading, an enhanced adrenergic effect on the heart, rather than the mechanical stress owing to hypertension, might be directly related to the increased heart weight in the α1D−/− mice. Although studies have suggested that α1-ARs are pivotal in promoting cardiac hypertrophy, most studies favor the α1A-AR as the dominant subtype,32 with little cardiac role of α1D-AR. This is in good agreement with our observation that the heart was enlarged in the α1D−/− mice under high circulating catecholamines. Besides the enhanced adrenergic system, biochemical alterations such as saltwater imbalance, other exogenous factors could be involved. Further study is required to clarify the functional role of α1D-AR in this type of acute renal failure.

The present experiment also clearly indicates that α1D-AR is a prerequisite for development of salt-induced hypertension. Possible explanations for the observation that mice lacking the α1D-AR gene are less susceptible to developing salt-induced hypertension could include (1) decreased vascular reactivity to enhanced adrenergic stimuli that accompanies salt loading, (2) altered sympathetic activity in the CNS, and (3) altered functional activity of renal α1D-AR in reabsorption of sodium.

The α1D−/− mice had a significantly attenuated increase in MAP with salt loading compared with that of α1D+/− mice. Catecholamines induce vasoconstriction mainly via stimulation of vascular α1-AR family, α1D-AR in particular.33 Our recent characterization of α1D−/− mice showed that the vascular contractile response and the pressor response to α1-AR stimulation are mediated primarily by α1D-AR, among the 3 α1-AR subtypes.14 Thus, α1-AR antagonists such as prazosin are considered to exert their hypotensive effect mainly by inhibiting vascular α1D-AR. Hence, mice lacking the α1D-AR are less susceptible to developing salt-induced hypertension, and this could partly be owing to their reduced vascular reactivity to α1-AR stimulation. In addition to α1D-AR, it was previously reported that mice lacking α2A-AR, which is abundant in the vasculature rather than in CNS and is responsible for a peripheral vasoconstrictive action,34 are less susceptible to develop hypertension in the same salt-loading hypertension model.22 Hence, these studies may indicate that...
an enhanced sympathetic activity is of importance in developing and maintaining this salt-loading hypertension. Moreover, the studies show that α_{1D}-AR and α_{3β}-AR, those mediating adrenergic vasoconstriction, can be potentially important therapeutic targets in this type of hypertension. Further studies with selective pharmacological tools will clarify the relative contribution of each receptor in this hypertension model.

The lesser increase in BP observed in α_{1D}^{−/−} mice can also be explained by a suppressed sympathetic activity. α_{1D}-AR has been implicated to regulate sympathetic outflow in the CNS, and the α_{1D}-AR blocker prazosin has been implicated to act in the CNS to suppress sympathetic outflow. In fact, we observed that the increase in circulating catecholamines with salt loading was less in α_{1D}^{−/−} mice compared with α_{1D}^{+/+} mice, although the basal levels of circulating catecholamines were not much different between α_{1D}^{+/+} and α_{1D}^{−/−} mice. As most of patients with hypertension have a higher nor epinephrine level, this is reminiscent of the previous report that most of patients with hypertension have a higher norepinephrine level.36,37 This is also consistent with the report of the previous reviews of the predominance of α_{1D}-adrenoceptors in the mesenteric vasculature from deoxycorticosterone-salt hypertensive rats: studies on vasoconstriction, radioligand binding and postreceptor events. J Pharmacol Exp Ther. 1994;268:576–583.

Perspective

Using α_{1D}-AR knockout mice, the present study shows that α_{1D}-AR plays an important role in developing the dietary salt-loading hypertension. Selective α_{3β}-AR antagonism could have significant therapeutic potential in the treatment of hypertension.

Acknowledgments

We thank Michi Narutomi for assistance. This work was supported in part by research grants from the Scientific Fund of the Ministry of Education, Science, and Culture of Japan; the Japan Health Science Foundation; the Ministry of Human Health and Welfare; the Organization for Pharmaceutical Safety and Research (OPSIR), and a Grant for a Liberal Harmonious Research Promotion System from the Science and Technology Agency.

References

30. Villalobos-Molina R, Ibarra M. α_{1}-adrenoceptors mediating contraction in arteries of normotensive and spontaneously hypertensive rats are of the α_{1D} or α_{1C} subtypes. *Eur J Pharmacol.* 1996;298:257–263.

32. Rokosh DG, Stewart AF, Chang KC, Bailey BA, Karliner JS, Camacho SA, Long CS, Simpson PC. α_{1}-Adrenergic receptor subtype mRNAs are differentially regulated by α_{1D}-adrenergic and other hypertrophic stimuli in cardiac myocytes in culture and in vivo: repression of α_{1A} and α_{1D} but induction of α_{1C}. *J Biol Chem.* 1996;271:5839–5843.

41. DiBona GF, Kopp UC. Neural control of renal function. *Physiol Rev.* 1997;77:197–.

43. Liu F, Nesbitt T, Drezner M, Friedman PA, Gesek FA. Proximal nephron Na+/H+ exchange is regulated by α_{1C} and α_{1D}-adrenergic receptor subtypes. *Mol Pharmacol.* 1997;52:1010–1018.

Role of the α_{1D}-Adrenergic Receptor in the Development of Salt-Induced Hypertension
Akito Tanoue, Masahiro Koba, Shigeki Miyawaki, Taka-aki Koshimizu, Chihiro Hosoda, Sayuri Oshikawa and Gozoh Tsujimoto

Hypertension. 2002;40:101-106; originally published online June 10, 2002; doi: 10.1161/01.HYP.0000022062.70639.1C

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/40/1/101

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/