Tissue-Specific Response to Interstitial Angiotensin II in Humans

Michael Boschmann, Jens Jordan, Frauke Adams, Niels-Juel Christensen, Jens Tank, Gabriele Franke, Mandy Stoffels, Arya M. Sharma, Friedrich C. Luft, Susanne Klaus

Abstract—Angiotensin II is synthesized locally in various tissues; however, the role of interstitial angiotensin II in the regulation of regional metabolism and tissue perfusion is not clear. We characterized the effect of interstitially applied angiotensin II in skeletal muscle and subcutaneous adipose tissue of young, normal-weight, healthy subjects by using the microdialysis technique. Furthermore, we tested the hypothesis that the effect of interstitial angiotensin II is modulated by nitric oxide. Tissues were perfused with 0.01, 0.1, and 1 μmol/L angiotensin II in the presence of the L- or D-isomer of N⁶-nitro-arginine-methyl ester (L- or D-NAME), the effective and noneffective isomer, respectively, for blocking nitric oxide synthase. Dialysate ethanol, glycerol, glucose, lactate, and pyruvate concentrations were measured to assess changes in blood flow (ethanol dilution technique), lipolysis, and glycolysis, respectively. Baseline blood flow and dialysate concentrations of the metabolites were similar with L- and D-NAME in both tissues. Blood flow and dialysate glucose and lactate did not change significantly in both tissues during perfusion with angiotensin II. Dialysate glycerol dose-dependently increased in adipose tissue (P<0.0438) but decreased in muscle (P<0.007). In muscle, dialysate pyruvate increased (P<0.0002), whereas lactate/pyruvate ratio decreased (P<0.001), both dose-dependently. All effects were similar with L- and D-NAME and could be reversed by nitroprusside. We conclude that in contrast to the profound hemodynamic effect of intravascular angiotensin II, interstitial angiotensin II has a minimal acute effect on blood flow in both tissues. However, interstitial angiotensin II modulates lipid and carbohydrate metabolism in a tissue specific fashion. Thus, the physiology of interstitial angiotensin II cannot be predicted from intravascular studies. (Hypertension. 2003;41:37-41.)

Key Words: glucose ▪ lactates ▪ angiotensin II ▪ microcirculation

A ngiotensin (Ang) II has a pivotal role in the regulation of vascular tone and of electrolyte and water homeostasis and may contribute to essential hypertension.1–4 Moreover, Ang II stimulates cell growth and differentiation and exerts metabolic effects that may contribute to cardiovascular disease.1–4 Ang II is generated in both the intravascular and interstitial space.5,6 The systemic and local constituents of the renin-angiotensin system are moderately increased in normotensive obese patients and dramatically increased in hypertensive obese patients.7 Intravascular and interstitial Ang II concentrations appear to be regulated in part independently from each other. In the rat, Ang II interstitial concentrations in the kidneys are much higher than plasma concentrations.8 In this model, acute ACE inhibition markedly reduced plasma Ang II. In contrast, interstitial Ang II did not change. Similarly, acute volume expansion elicited a differential effect on intravascular and on interstitial Ang II.8 The fact that Ang II concentrations in the intravascular and in the interstitial space are independently regulated may suggest that Ang II has different physiological effects in both compartments.

Intravascular Ang II, for example, elicits a profound increase in vascular tone through stimulation of Ang II type 1 (AT1) receptors.1–3 Interstitial Ang II, however, causes a moderate decrease in blood flow in adipose tissue, and this effect is clearly dependent on tissue location.9 Nevertheless, the physiology of interstitial Ang II in humans is still poorly understood. We sought to elucidate the effect of interstitial Ang II on tissue perfusion, metabolism, and interstitial norepinephrine in skeletal muscle (primarily energy consuming) and in adipose tissue (primarily energy storing). We used the microdialysis technique to apply Ang II locally to the interstitial space.9 Furthermore, we determined whether or not the effect of interstitial Ang II is modulated by nitric oxide (NO).10

Methods

Subjects

The study population included 8 drug-free, nonsmoking male volunteers, 29±4 years of age, height of 1.82±0.02 m, and body mass index of 23.62±1.81 kg/m². All were healthy as determined by medical history,
physical examination, and routine blood and urine tests. The study was approved by the Institutional Review Board of Humboldt University, Berlin, and the subjects gave written informed consent.

Microdialysis

After an overnight fast, two microdialysis catheters each (distance, 2.5 cm) were inserted into abdominal subcutaneous adipose tissue (adipose) at the level of the umbilicus and into skeletal muscle (quadriceps femoris, vastus lateralis). Details of that technique are described elsewhere. Before insertion of the catheters, a local anesthetic (lidocaine) was given, either as a cream for adipose (EMLA, Astra GmbH) or as a subcutaneous injection for muscle (Xylocitin 1%, Jenapharm GmbH). After insertion of the probes, tissue perfusion was started at a flow rate of 2 μL/min with Ringer’s solution (Serumwerk Bernburg AG). The solution was supplemented with 50 mmol/L ethanol (EtOH, B. Braun Melsungen AG) and 100 μmol/L of either N^2^-nitro-L-arginine-methyl ester (L-NAME, effective in blocking NO synthase, NOS) or the d-isomer (D-NAME, ineffective in blocking NOS). CMA/60 microdialysis catheters and CMA/102 microdialysis pumps (both from CMA Microdialysis AB) were used. A period of 60 minutes was allowed for recovery of the tissues from insertion trauma and for baseline calibration of the perfusion system before commencement of the dialysis protocol.

After the baseline perfusion was completed, 0.01, 0.1, and 1 μmol/L Ang II was added successively to the perfusion medium for testing the dose-response relation of Ang II on baseline blood flow and dialysate glucose, lactate, and glyceral concentrations. In a final perfusion step, the NO-donor nitroprusside (NP) was added to the highest Ang II concentration. Ang II and L- and D-NAME were purchased from Clinalfa and NP (Nipruss) from Schwarz Pharma AG. During each perfusion step, three 15-minute fractions of dialysates were collected and frozen at −80°C until analyses were performed.

Analyses

Ethanol concentration in the perfusate (inflow) and dialysate (outflow) was measured with a standard enzymatic assay. Dialysate concentrations of glucose, lactate, and pyruvate were measured on a CMA/600 analyzer (CMA Microdialysis AB). Samples for norepinephrine were processed and analyzed as previously described.

Calculations and Statistics

Changes in blood flow were determined by using the ethanol dilution technique, which is based on the Fick principle. Accordingly, a decrease in the outflow/inflow ratio is equivalent to an increase in blood flow and vice versa. For simplicity, the term ethanol ratio is substituted for the term ethanol outflow/inflow ratio. Changes in glycerol were used to assess changes in lipolysis and/or lipid mobilization; changes in glucose, lactate, and pyruvate were used to assess changes in carbohydrate metabolism. In situ recovery for glycerol, glucose, lactate, and pyruvate in the dialysate was assessed by near-equilibrium dialysis. For all four metabolites, we found recoveries of ~30% in adipose tissue and 50% in muscle. All data are given as mean ± SEM. Statistical analyses were carried out by ANOVA with repeated measures, with pretreatment with L- or D-NAME and concentration of Ang II used as factors to determine the significance of differences in the hemodynamic and metabolic responses to Ang II either in the presence or absence of NOS blockade. For testing, a statistical program (InStat, Version 3.0, Graphpad Software Inc) was used. Significant F ratios from the ANOVA were followed by post hoc comparisons among means by use of the Bonferroni correction.

Results

Resting heart rate was 56±6 bpm. Resting systolic and diastolic blood pressures were 118±7 and 63±10 mm Hg, respectively. These values did not change significantly during local perfusion of adipose tissue and muscle with Ang II by microdialysis (data not shown).

In a subset of experiments it was tested whether D-NAME, the isoform ineffective for blocking NOS, could elicit any unspecific effects on tissue blood flow and metabolism. Compared with baseline values in the absence of D-NAME, the presence of D-NAME in the perfusate did not influence ethanol ratio and dialysate concentrations of glucose, lactate, pyruvate, and glyceral (data not shown). Therefore, in the following, all baseline values in the presence of D-NAME can be considered as control values.

Blood Flow

Baseline ethanol ratio was 0.30 and 0.08 in adipose tissue and muscle, respectively, without any significant differences between L- and D-NAME (Figure 1). Ang II did not result in any
significant change in ethanol ratio in both tissues, neither with L-nor with D-NAME. Final addition of NP to the medium induced a significant decrease in ethanol ratio down to \(\approx 0.15 \) and 0.04 in adipose tissue and muscle, respectively (Figure 1).

Metabolites

Baseline dialysate concentration of glucose was \(\approx 0.96 \) and 1.90 mmol/L, whereas that of lactate was \(\approx 0.55 \) and 0.95 mmol/L in adipose tissue and muscle, respectively (L-NAME=D-NAME). There were no significant changes in the concentrations of glucose and lactate during Ang II perfusion, either in adipose tissue or in muscle (Figure 1). However, dialysate glucose concentration increased significantly to \(\approx 1.7 \) mmol/L in adipose tissue and 2.6 mmol/L in muscle after NP administration (Figure 1). In both tissues, dialysate lactate concentration was not affected by NP (Figure 1). The response of dialysate glycerol to Ang II showed tissue-specific differences. In adipose tissue, dialysate glycerol increased dose-dependently from 115\(\pm 9 \) and 100\(\pm 12 \) \(\mu \text{mol/L} \) to 149\(\pm 12 \) and 131\(\pm 13 \) \(\mu \text{mol/L} \) in the presence of L- and D-NAME, respectively (\(P = 0.0438 \), Figure 1). At all Ang II concentrations used, dialysate glycerol concentrations were higher in the presence of L-NAME compared with D-NAME; however, the difference did not reach a significant value (\(P = 0.0531 \)). The relative increases in dialysate glycerol did not differ between L- and D-NAME. Addition of NP was followed by a decrease in dialysate glycerol down to \(\approx 50 \) \(\mu \text{mol/L} \) (L-NAME=D-NAME). In muscle, Ang II induced a dose-dependent decrease in dialysate glycerol from \(\approx 34 \) to 22 \(\mu \text{mol/L} \) (\(P < 0.007 \)), with no differences between L-NAME and D-NAME (Figure 1). After addition of NP, dialysate glycerol returned back to baseline level. Dialysate pyruvate increased dose-dependently during Ang II perfusion in muscle from \(\approx 0.020 \) to 0.045 \(\mu \text{mol/L} \) (L-NAME=D-NAME) (Figure 2). Correspondingly, the lactate/pyruvate ratio decreased dose-dependently from \(\approx 55 \) to 26 (\(P = 0.001 \), L-NAME=D-NAME) (Figure 2). Addition of NP led to a return of dialysate pyruvate concentration and lactate/pyruvate ratio back to baseline levels.

Norepinephrine

To test if Ang II is able to facilitate sympathetic neurotransmission, adipose tissue and muscle were perfused with increasing doses of either Ang II or isoproterenol. In adipose tissue, dialysate norepinephrine concentration increased from 0.33\(\pm 0.08 \) (baseline) to 0.52\(\pm 0.04 \) \(\mu \text{mol/L} \) (\(P < 0.05 \)) during perfusion with 0.01 \(\mu \text{mol/L} \) Ang II (Figure 3). Higher Ang II concentration did not lead to a further increase in dialysate norepinephrine concentration. Perfusion with isoproterenol induced a dose-dependent increase in dialysate norepinephrine concentration from 0.42\(\pm 0.04 \) (baseline) to 1.74\(\pm 0.30 \) \(\mu \text{mol/L} \) at 1 \(\mu \text{mol/L} \). In muscle, dialysate norepinephrine concentration did not change at any Ang II concentration used (Figure 3). However, during perfusion with isoproterenol, dialysate norepinephrine concentration increased from 0.84\(\pm 0.14 \) (baseline) to 2.09\(\pm 0.16 \) at 1 \(\mu \text{mol/L} \).

Discussion

The main finding in our study is that interstitially applied Ang II elicits hemodynamic and metabolic responses that are not predicted from intravascular studies. Ang II is a strong vasoconstrictor when applied to the intravascular space. In contrast, we observed that Ang II has a minimal effect on the perfusion of adipose tissue and of skeletal muscle when applied to the interstitial space. The absence of an important hemodynamic effect of Ang II in both tissues may indicate that interstitial Ang II is less important for blood flow regulation than intravascular Ang II, at least in skeletal muscle and in abdominal adipose tissue. We used the ethanol dilution technique, which is based on the Fick principle, to assess changes in tissue blood flow. Using this methodology, we have previously shown that in skeletal muscle, interstitial epinephrine elicits a dose related decrease in tissue blood flow. In contrast, in abdominal adipose tissue epinephrine and phenylephrine did not decrease blood flow when applied through the microdialysis probe. Obviously, resting adipose tissue is already at its minimum level, at least in men. Nitroprusside and isoproterenol elicited a marked increase in skeletal muscle and in adipose tissue blood flow. Moreover, we were able to show a subtle interaction between adrenergic stimulation and NO. Thus, absence of a change in ethanol ratio with Ang II is indeed consistent with absence of a major change in blood flow.

Even though interstitial Ang II did not have a major effect on tissue blood flow, it elicited marked metabolic changes in two functionally different tissues, namely white adipose tissue and skeletal muscle. Ang II can bind to plasma membrane receptors on adipocytes but also on presynaptic fibers of sympathetic neurons enhancing transmitter release during nerve stimulation. Therefore, Ang II could influence lipid and carbohydrate metabolism directly through an effect on receptors on adipocytes and indirectly through activation of receptors on presynaptic fibers of adrenergic neurons. A combination of both mechanisms could also occur. In our study, Ang II application did not lead to a major change in interstitial norepinephrine concentrations. In contrast, stimulation of presynaptic \(\beta -2 \) adrenoreceptors increases interstitial norepinephrine markedly. However, the sensitivity of our method may not be sufficient enough to exclude a subtle effect of interstitial Ang II on norepinephrine turnover.

As indicated by the changes in dialysate glycerol concentrations, Ang II affected lipolysis in a tissue-specific manner. We observed a stimulation in adipose tissue but an inhibition in muscle, both dose-dependently. However, the increase in lipolysis with Ang II (\(+30\% \)) was much weaker than the increase observed with isoproterenol (\(+300\% \)). After binding of Ang II to its receptors, mainly Ang II type I (AT-1) receptors, various signal transduction systems are triggered, leading to an activation of phospholipases C, A2, and D, inhibition of adenylate cyclase, opening of calcium channels, or activation of tyrosine kinases. Inhibition of adenylate cyclase results in an inhibition of lipolysis and that could account for the antilipolytic effect of Ang II in muscle. Jones et al described a lipogenic effect of Ang II in differentiated murine 3T3-L1 preadipocytes and human adipocytes, along with increased expression and activity of the lipogenic enzymes glycerol-3-phosphate dehydrogenase and fatty acid synthase. The lipogenic effect of Ang II found in adipocytes in vitro contrasts with the small lipolytic effect.
found in adipose tissue in vivo. It is unclear, however, whether the lipolytic effect in vivo is the consequence of the small but significant increase in dialysate norepinephrine during perfusion with Ang II or whether it is the result of some unspecific effects.

Blocking of NOS with L-NAME did not significantly modulate the Ang II–induced effects. However, as has been demonstrated recently, the L-NAME concentration used is effective for blocking NOS. Obviously, endogenously produced NO is not sufficient to interact with Ang II. In contrast, the NO donor NP attenuated the Ang II–induced effects on lipolysis. However, the NP concentration used is in the millimolar range and is effective to achieve maximum vasodilation. Therefore, the NP-induced effects can mostly be attributed to the increased tissue perfusion. In adipose tissue, dialysate glycerol decreased below baseline values. In skeletal muscle, dialysate glycerol increased close to baseline values. The glycerol decrease in adipose tissue is in line with the increase in blood flow that we observed and may indicate increased glycerol clearance. However, the glycerol increase in muscle close to baseline levels despite an increased blood flow indicates that NO activates basal lipolysis and counteracts the antilipolytic effect of Ang II. Gaudiot et al. reported that NO exogenously added to isolated rat adipocytes stimulates basal lipolysis but inhibits stimulated lipolysis through cGMP-independent mechanisms that are tightly linked to the redox state of NO. Dialysate glycerol concentrations in adipose tissue tended to be increased with NOS inhibition. The lipolytic effect of NOS inhibition in adipose tissue in vivo is in contrast to the antilipolytic effect observed in adipocytes in vitro. However, NO is a tonic inhibitor of sympathetic nerve traffic, and inhibition of NOS is accompanied by an increase in both basal and stimulated lipolysis in adipose tissue in vivo, as has been shown recently.

In addition to the effects on lipolysis, Ang II markedly changed carbohydrate metabolism in skeletal muscle. Dialysate lactate did not change during perfusion with Ang II, whereas dialysate pyruvate increased and lactate/pyruvate ratio decreased dose-dependently. A decrease in lactate/pyruvate ratio is consistent with an increase in aerobic glycolysis. On the other hand, the changes in dialysate lactate, pyruvate, and lactate/pyruvate ratio are consistent with a hypoglycemic situation: The lower availability of glucose is compensated by a greater efficiency of glucose metabolism. Muscle blood flow and glucose supply were not significantly affected by Ang II. Obviously, Ang II moderately impaired glucose uptake into the muscle, leading to a metabolic response similar to a hypoglycemic situation. In skeletal muscle, dialysate lactate did not change during perfusion with Ang II, whereas dialysate pyruvate increased and lactate/pyruvate ratio decreased dose-dependently. A decrease in lactate/pyruvate ratio is consistent with an increase in aerobic glycolysis. On the other hand, the changes in dialysate lactate, pyruvate, and lactate/pyruvate ratio are consistent with a hypoglycemic situation: The lower availability of glucose is compensated by a greater efficiency of glucose metabolism. Furthermore, in vitro recovery of Ang II is 20% at a flow rate of 2 μL/min when using CMA/60 catheters. Recovery could be even lower in vivo. We did not test for that. It is possible, however, that 10% of Ang II of the perfusate diffuses into the interstitial space. Taking this into account, a perfusate concentration of Ang II in vivo is much higher than plasma concentrations. Therefore, endogenous Ang II concentrations in the interstitium are much higher than encountered in the circulation. In fact, in vivo, Ang II induces a small but significant increase in dialysate norepinephrine. No changes were observed in skeletal muscle. IP elicited a marked increase in dialysate norepinephrine in both tissues at 1 μmol/L. *P < 0.05 when compared with baseline for IP and Ang II, respectively.
0.1 μmol/L Ang II would correspond to an interstitial concentration of ≈0.01 μmol/L, a value that is already within the physiological range. Thus, although we cannot completely rule out that some of the effects observed at the higher Ang II doses in our study represent the pharmacological rather than the physiological action of Ang II, the magnitude of the Ang II effect probably corresponds to the physiological response of both tissues to Ang II.

In conclusion, interstitially applied Ang II elicits rather weak hemodynamic and metabolic effects in adipose tissue, whereas it dose-dependently inhibits lipolysis and glucose uptake in muscle, independent of its hemodynamic effects. The metabolic effects are not modulated by endogenously produced NO. However, most of the effects are reversible when NO–donor NP is added to the perfusate.

Perspectives

Our data suggest a tissue-specific effect of Ang II regarding the regulation of lipolysis and glucose metabolism. Ang II has no major effect on tissue perfusion in adipose tissue and muscle when applied interstitially. However, lipolysis is weakly stimulated in adipose tissue but strongly inhibited in muscle by Ang II. Furthermore, Ang II stimulates pyruvate production, whereas lactate production is unchanged, resulting in an increase in lactate/pyruvate ratio in muscle. This observation indicates an impaired glucose supply into muscle, possibly caused by a partial inhibited glucose uptake. Possibly, this effect is even more pronounced in obesity and can, therefore, promote the development of obesity-associated insulin resistance. All these effects are probably mainly but not exclusively related to activation of Ang II receptors on adipocytes or muscle cells/fibers rather than changes in norepinephrine release through activation of Ang II receptors on adipocytes or muscle cells/NAAD. In Bergmeyer HU, ed. Methods of Enzymatic Analysis. Weinheim: Verlag Chemie; 1974:1499–1505.

Tissue-Specific Response to Interstitial Angiotensin II in Humans
Michael Boschmann, Jens Jordan, Frauke Adams, Niels-Juel Christensen, Jens Tank, Gabriele Franke, Mandy Stoffels, Arya M. Sharma, Friedrich C. Luft and Susanne Klaus

Hypertension. 2003;41:37-41; originally published online November 25, 2002;
doi: 10.1161/01.HYP.0000042665.85720.A0
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/41/1/37

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/