Abstract—Impaired flow-dependent, endothelium-mediated vasodilation is an early finding in patients with coronary artery disease (CAD). Experimental and some clinical studies observed that angiotensin type-1 receptor antagonists (AT1A) enhance endothelium-dependent relaxation in CAD. The present study was designed to determine whether AT1A improves flow-dependent dilation (FDD) in patients with CAD and, if so, whether bradykinin and NO are involved. High-resolution ultrasound was used to measure radial artery diameter at rest and during reactive hyperemia, causing endothelium-mediated vasodilation. Twenty patients with CAD were randomly assigned to receive intrabrachial infusion of candesartan (800 μg/min) with and without icatibant, a bradykinin B2-receptor antagonist (90 μg/min; group A) or N-monomethyl-L-arginine (L-NMMA), an NO-synthase inhibitor (7 μmol/min; group B). The AT1A candesartan improved FDD by >40%, an effect that was inhibited by icatibant (group A: control, 7.3±0.9; candesartan, 10.3±1.1; candesartan+icatibant, 5.0±0.5%). Similarly, L-NMMA blunted the beneficial effect of candesartan (group B: control, 6.3±0.6; candesartan, 8.9±0.6; candesartan+L-NMMA: 4.7±0.5%; each P<0.01). The angiotensin type-1 receptor antagonist candesartan improves flow-dependent, endothelium-mediated vasodilation in patients with CAD. This effect is inhibited by either icatibant and/or L-NMMA, suggesting that both bradykinin and NO contribute to the vascular effects of AT1-receptor antagonists in this patient population. (Hypertension. 2003;41:1092-1095.)

Key Words: endothelium ■ angiotensin II ■ receptors, angiotensin II ■ angiotensin antagonist ■ bradykinin ■ nitric oxide

ACE inhibitors improve endothelium-dependent vasodilation in peripheral and coronary arteries, both after short-term and long-term administration.1–5 This beneficial effect, which appears to involve bradykinin and/or the bradykinin B2 receptor,1–5 may contribute to the beneficial long-term effects of ACE inhibitors in arteriosclerotic vascular disease, resulting in reduced mortality and morbidity rates in this patient population.6 In contrast to ACE inhibitors, angiotensin type 1 (AT1) receptor antagonists are thought to act through the AT1 receptor without affecting the breakdown of bradykinin, thereby avoiding the undesirable side effects of ACE inhibitors. However, there is increasing experimental evidence that AT1A can enhance endothelium-dependent relaxation and that this effect is, in part, mediated by bradykinin and nitric oxide.7,8

Endothelium-dependent relaxation of coronary and peripheral arteries, including flow-dependent dilation (FDD), is impaired in patients with coronary artery disease (CAD)2,3,9–11 and may dispose these patients to increased cardiovascular risk. AT1A have become popular drugs for treatment of hypertension and, more recently, for heart failure, but at the same time, the apparent lack of inhibition of the bradykinin breakdown has raised some doubts of equal cardiovascular potency as compared with ACE inhibitors.

This study was designed to test the hypothesis that AT1A improve the impaired endothelium-mediated vasodilation in patients with CAD and to elucidate the contribution of bradykinin and NO. Accordingly, we determined the effect of intra-arterial infusion of the AT1A candesartan on endothelium-mediated vasodilation alone and during coinfusion with N-monomethyl-L-arginine (L-NMMA) to inhibit NO synthesis or icatibant to block the bradykinin B2 receptor.

Methods

The study (with institutional ethics committee approval) was performed in 20 patients with CAD who had given written informed consent. All procedures were in accordance with institutional guidelines. Patients with diabetes, congestive heart failure, uncontrolled hypertension, or prior therapy with ACE inhibitors or AT1-receptor antagonists were excluded. Patients were randomly assigned to 2 groups. In group A (n=10; age, 57±4 years; LDL cholesterol, 148±12 mg/dL), we determined the effect of candesartan alone and during coinfusion with icatibant. In group B (n=10; age, 56±3 years; LDL cholesterol, 163±12 mg/dL), we determined the effect of candesartan alone and during coinfusion with L-NMMA. Radial artery diameter and blood flow was measured and FDD was...
performed as published recently.1,12 Arterial blood pressure and heart rate were measured by cuff technique on the contralateral arm.

After insertion of a polyethylene catheter into the brachial artery of the nondominant arm, saline was infused, blood flow velocity was recorded, and radial artery diameter was determined.12 Wrist occlusion was performed to determine FDD in response to reactive hyperemia.12 After obtaining baseline values for blood flow and diameter again, candesartan (ASTRA; 800 µg/min for 5 minutes) was infused, followed by saline during arterial occlusion and determination of FDD after release of arterial occlusion. Dose selection of candesartan was based on results of dose-finding experiments in 8 patients, demonstrating that this dose caused a robust increase in FDD without affecting systemic hemodynamics.

Next, in group A, icatibant (HOE 140; 90 µg/min for 5 minutes1) was coinfused with candesartan and FDD was determined again. In group B, L-NMMA (7 µmol/min; 5 minutes12) was coinfused with candesartan and FDD was determined again. Finally, sodium-nitroprusside (SNP; 10 µg/min; 5 minutes) was infused to assess endothelium-independent vasodilatation.12 To strengthen the principal findings of the present study, we performed additional control experiments: In 5 patients with CAD (control group), vehicle was infused instead of candesartan; FDD was determined during control conditions and was repeated after 5-minute infusion of vehicle (NaCl 0.9%; vehicle 1) and again after a second infusion of vehicle (vehicle 2).

Furthermore, we determined the effect of icatibant and L-NMMA alone in patients with CAD and compared the effect with the effect of candesartan and coinfusions. In 3 patients (control group candesartan/icatibant), we measured FDD during control conditions, after icatibant, again during control conditions, after candesartan, and after coinfusion of candesartan+icatibant. In 3 additional patients with CAD (control group candesartan/L-NMMA), FDD was determined during control conditions, after L-NMMA, again during control conditions, after candesartan, and after coinfusion of candesartan+L-NMMA.

In addition, we determined the effect of candesartan on SNP-induced vasodilation in 7 patients with CAD (control group SNP/candesartan): The effect of SNP (10 µg/min; 5 minutes) was compared with the effect of SNP during coinfusion with candesartan (800 µg/min for 5 minutes).

Blood flow and diameter data reported for control, candesartan, coinfusions, and SNP represent measurements obtained during the last minute of each infusion.

Data are expressed as mean±SEM. Comparisons of >2 measurements within one group of patients were performed by 1-way ANOVA followed by the Student-Newman-Keuls test. A value of \(P<0.05 \) was considered to be statistically significant.

Results

After release of wrist occlusion, a significant increase of radial artery diameter was observed representing FDD, defined as percent increase of vessel diameter (Figure). Under resting conditions, neither infusion of candesartan nor coinfusion of candesartan with icatibant or L-NMMA changed radial artery diameter. During flow-stimulated conditions, however, FDD was improved after candesartan in all patients (Figure). In group A, FDD was reduced after coinfusion of candesartan with icatibant; in group B, FDD was reduced after coinfusion of candesartan with L-NMMA (Figure). The effects of candesartan and coinfusions of candesartan with icatibant or L-NMMA were observed to a similar extent in every subject studied. Intra-arterial infusion of SNP increased the diameter of radial artery (group A, 3.10±0.1 to 3.52±0.2; ie, 13.3±1.0%; group B, 3.41±0.1 to 3.84±0.1 mm; ie, 12.7±1.2%; each group \(P<0.01 \) versus baseline).

In the additional control group of patients, FDD during control conditions was 6.7±0.7%; FDD after infusion of vehicle 1 was 6.3±0.5%, and FDD after infusion of vehicle 2 was 6.6±0.5% (\(P=NS \)).

The results of the control group candesartan/icitabant were FDD (control 1), 7.1±0.4%; FDD (icitabant), 5.0±0.6% (\(P<0.05 \) versus control 1); FDD (control 2), 6.6±0.6%; FDD (candesartan), 10.6±0.6% (\(P<0.05 \) versus control 2); FDD (candesartan+icitabant), 4.8±0.4% (\(P<0.05 \) versus FDD after candesartan).

The results of the control group candesartan/L-NMMA were FDD (control 1), 7.2±0.3%; FDD (L-NMMA), 4.5±0.3% (\(P<0.05 \) versus control 1); FDD (control 2), 7.0±0.3%; FDD (candesartan), 9.2±0.4% (\(P<0.05 \) versus control 2); and FDD (candesartan+L-NMMA), 5.3±0.4% (\(P<0.05 \) versus FDD after candesartan). The results of these additional measurements demonstrate that icatibant and L-NMMA (both of which did not affect resting diameter of the brachial artery per se) reduce FDD, suggesting that both bradykinin/B\textsubscript{2} receptor and NO contribute to FDD of the radial artery in patients with CAD. In addition, we show after a second control measurement of FDD that the beneficial effect of candesartan on FDD is reduced by coinfusion with icatibant and L-NMMA down to values after icatibant or L-NMMA alone.

In the control group SNP/candesartan, the vasodilation after SNP alone was 20.0±2.6%; the vasodilation after coinfusion of SNP and candesartan was 19.7±2.7% (\(P=NS \)). Since candesartan did not affect SNP-induced vasodilation, we did not further investigate the effects of L-NMMA or icatibant on SNP-induced vasodilation.

Radial artery blood flow at rest was not affected by infusion of candesartan or coinfusions with icatibant and L-NMMA (group A: control, 40±7; candesartan, 44±6; candesartan+icitabant, 45±5; group B: control, 52±9; cand-
desartan, 52±10; candesartan + L-NMMA, 45±8 mL/min;
\(p=\text{NS} \). Maximal blood flow during reactive hyperemia after
release of wrist occlusion was not affected by infusion of
candesartan and coinfusion of candesartan with icatibant or
L-NMMA (group A: control, 110±15; candesartan, 124±16;
candesartan + icatibant, 114±11; group B: control, 109±18;
candesartan, 108±11; candesartan + L-NMMA, 109±16
\(\text{mL/min}; \ p=\text{NS} \). Infusion of SNP increased radial artery
flow in all groups to a similar extent (group A: 44±7 to
79±9; group B: 40±5 to 84±4 mL/min; each \(P<0.05
\) versus control). Systemic blood pressure and heart rate did
not change during the experimental protocol.

Discussion

The salient finding of the present study is that (1) the
AT\(_1\)-receptor antagonist candesartan improves the impaired
flow-dependent, endothelium-mediated vasodilation in
patients with CAD and (2) the beneficial effect of candesartan
is mediated by bradykinin/B\(_2\) receptor and NO.

Several groups have demonstrated impaired endothelium-
mediated vasodilation in patients with CAD in coronary
arteries and in the forearm circulation.\(^2,3,9\) In the present
study, all patients had severely reduced flow-dependent,
endothelium-mediated vasodilation as compared with normal
FDD values established in our laboratory (patients with CAD:
6 to 8%; normal control subjects: 15±1%).\(^1,12\) FDD was
increased by >40% after local intra-arterial infusion of
candesartan, demonstrating that AT\(_1\)A improve endothelial
function in patients with CAD, consistent with previous
arstings in peripheral artery disease or diabetes.\(^13,14\) The
beneficial effect of candesartan on vascular function is
restricted specifically on endothelial function and cannot be
explained by improved vascular smooth muscle function,
since SNP-induced vasodilation of the radial artery was
unaffected by coinfusion with candesartan. This is in line
with our recent observation that long-term therapy with
losartant did not affect the effect of intra-arterial SNP on radial
artery diameter.\(^15\) In contrast, the beneficial effect of cande-
sartan on FDD in our patients with CAD was prevented by
coinfusion with L-NMMA. In fact, candesartan significantly
increased the porportion of FDD mediated by NO (represented
by the porportion of FDD inhibited by L-NMMA), clearly
indicating that the AT\(_1\)A increase the bioavailability of NO.
The specificity of this result finds further support by our
vehicle control experiments demonstrating no change of FDD
after repeated measurements. Accordingly, the changes of
FDD after L-NMMA or coinfluosons cannot be explained by
anunspecific negative effect of repeated determinations of
FDD but represen specific effects. Furthermore, we
performed additional experiments including a second control
measurement of FDD after the end of L-NMMA infusion,
demonstrating FDD values comparable to baseline conditions
before L-NMMA. This result further supports our concept of
specific drug effects with limited duraton after infusion of
L-NMMA, candesartan, and coinfluosons. Our findings are
therefore consistent with experimental findings in dog coro-
nary arteries demonstrating that losartan improved endothe-
lum-mediated vasomotion, an effect that was prevented by
the NO-synthase inhibitor L-NAME, suggesting that this
effect was mediated by NO.\(^7\) Although short-term improve-
ment of endothelium-dependent relaxation by AT\(_1\)A and the
involvement of NO have been observed in experimental
arstings and the present clinical investigation, the
underlying mechanism(s) mediating this NO-dependent ef-
ef of AT\(_1\)A remained unclear. However, recent findings in
transgenic mice have delineated the interaction of NO,
bradykinin, and the angiotensin type 2 (AT\(_2\)) receptor.\(^16\)
Endothelial cells express the bradykinin B\(_2\) receptor, which,
when activated, stimulates the production and release of NO.
In spontaneously hypertensive rats, AT\(_2\) activation has been
shown to increase vascular cGMP levels, an effect that could
be inhibited by bradykinin B\(_2\) receptor blockade, by AT\(_2-
) receptor blockade or inhibition of NO synthesis.\(^8\) AT\(_1\)A
treatment has been shown to be associated with significant
increases of plasma levels of angiotensin II,\(^17\) which, in the
fate of AT\(_1\)A blockade, stimulate the AT\(_2\) receptor.\(^8\) It has
therefore been suggested that the beneficial effect of AT\(_1\)A on
endothelial function may be explained by stimulation of the
AT\(_2\) receptor, leading to activation of the bradykinin-NO
cascade. This concept is supported by recent work of Tsu-
sumi et al,\(^18\) demonstrating that angiotensin II leads to
vasodilation instead of vasoconstriction in transgenic mice
overexpressing the AT\(_2\) receptor, an effect that was prevented
by the bradykinin B\(_2\)-receptor antagonist icatibant and the
NO-synthase inhibitor L-NAME. In fact, these investigators
suggest that AT\(_2\)-mediated activation of the Na\(^+\)H\(^{-}\) ex-
changer promotes intracellular acidosis and subsequent acti-
vation of kininogenses that would enhance kinin formation,
which, in turn, stimulates the release of NO.\(^18\)

The results of our present work are consisten with this
concept, since the beneficial effect of candesartan on endo-
thelium-mediated vasodilation in response to increased flow
was prevented by concomitant infusion of the B\(_2\)-receptor
agonist icatibant. Notably, previous clinical observations
from our group and experimental findings in bradykinin B\(_2\)
receptor knockout mice have shown that bradykinin is in-
volved in flow-dependent vasodilation.\(^19,20\) The present study
extends these observations by showing that (1) the contribu-
tion of endogenous bradykinin to FDD is limited during
control conditions (represented by the difference: FDD con-
trol minus FDD after icatibant) and that (2) the contribution
of endogenous bradykinin is significantly increased after
short-term AT\(_1\)A with candesartan (represented by the differ-
ence FDD after candesartan minus FDD after candesartan+icatibant). Our data support the concept that the
short-term AT\(_1\)A-mediated, enhanced FDD in vivo in patients
with CAD is related to a bradykinin/B\(_2\)-receptor dependent
mechanism.

In the present study, however, it was not possible to
investigate the contributon of the AT\(_2\)R after treatment with
candesartan directly, because specific AT\(_2\)-A, such as
PD123319, are not available for application in humans.
However, activation of AT\(_2\) receptors by endogenous angio-
tensin II has been shown to be involved in FDD in rat
resistance arteries.\(^21\)

If the experimental observations and proposed mechanisms
are operating in humans, the contribution of the bradykinin/B\(_2\)
receptor to increased FDD after short-term AT\(_1\)A treatment
would be, however, restricted to tissues with sufficient expression of the AT₁ receptor. The involvement of bradykinin after short-term AT₁ does not exclude other mechanisms of AT₁ blockade can contribute to improved endothelial function after prolonged treatment. In this respect, we have recently presented indirect evidence that the beneficial effect of long-term therapy with losartan on endothelial function is, in part, related to antioxidative effects. In patients with CAD, the beneficial effect of an intra-arterial infusion of the antioxidant vitamin C on endothelium-dependent relaxation was lost after 4 weeks of therapy with losartan, probably, in part, related to increased activity of the endothelial-bound superoxide dismutase.¹⁵

In conclusion, our present work has demonstrated that short-term administration of AT₁A enhance endothelial function in patients with CAD, supporting the concept that activation of the bradykinin/NO cascade is involved in the vascular effects of AT₁A in humans.

References
AT₁-Receptor Antagonism Improves Endothelial Function in Coronary Artery Disease by a Bradykinin/B₂-Receptor-Dependent Mechanism
Burkhard Hornig, Christoph Kohler, Daniel Schlink, Helma Tatge and Helmut Drexler

Hypertension. 2003;41:1092-1095; originally published online March 24, 2003;
doi: 10.1161/01.HYP.0000064942.77814.26
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/41/5/1092

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/