Estrogen or the AT1 Antagonist Olmesartan Reverses the Development of Profound Hypertension in the Congenic mRen2.Lewis Rat

Mark C. Chappell, Patricia E. Gallagher, David B. Averill, Carlos M. Ferrario, K. Bridget Brosnihan

Abstract—The influence of estrogen on the regulation of cardiovascular function remains a controversial and complex area of investigation. We assessed the effects of estrogen depletion in the congenic mRen(2).Lewis rat, established from the back-cross of the original (mRen2)-27 transgenic onto the Lewis inbred strain. Ovariectomy of heterozygous mRen(2).Lewis at 4 to 5 weeks resulted in a progressive increase in blood pressure compared with the sham surgery congenics at weeks 6 to 11. At 11 weeks, the ovariectomized mRen(2).Lewis (OVX) systolic blood pressure averaged 195±3.7 mm Hg versus 141±4.0 mm Hg for sham. Plasma Angiotensin (Ang) II, serum ACE activity, plasma renin concentration, as well as urinary excretion of Ang II, 8-isoprostanate F₂, and endothelin-1 were elevated; however, renal mRNA levels of eNOS were suppressed after ovariectomy. Estrogen replacement reduced blood pressure below both the sham and OVX by 11 weeks (125±2.9 mm Hg, n = 7, P<0.01 versus OVX and sham). Moreover, the AT₁ receptor antagonist olmesartan (CS866; week 12 to 16) essentially normalized blood pressure to 113±5.4 mm Hg (n = 6, P<0.01 versus OVX and sham). The attenuation of the hypertension was still evident 7 weeks after complete withdrawal of treatment (124±4.1 mm Hg at week 23). In summary, the OVX mRen.2.Lewis exhibited a rapid and sustained increase in blood pressure. Estrogen or olmesartan lowered pressure by a similar extent. We conclude that the ovary exerts considerable influence on the regulation of the blood pressure in the mRen2.Lewis strain, possibly by limiting activation of the renin-angiotensin system. (Hypertension. 2003;42[part 2]:781-786.)

Key Words: angiotensin II ■ angiotensin-converting enzyme ■ estrogen ■ rats, transgenic ■ hypertension, genetic

It is well recognized that ovarian hormones, particularly estrogen, exhibit a protective role on the cardiovascular system. After menopause, there is increased arterial pressure and higher rates of hypertension, renal disease, cardiovascular events, and mortality rates in women. However, recent clinical studies have questioned the beneficial effects of hormone replacement therapy (estrogen/progestin), particularly the actions that influence the cardiovascular system. Indeed, one arm of the Women’s Health Initiative (WHI) study with the combined therapy was halted prematurely because of negative outcomes, although the estrogen replacement group has continued at the present time. In light of the clinical data, the protective actions of estrogen would appear to be in contrast to the hormone’s effects on several components of the renin-angiotensin system (RAS)—one of the key regulatory systems for the control of blood pressure and cardiovascular pathologies. Specifically, estrogen stimulates the expression of angiotensinogen from the liver, kidney, and other tissues, as well as increases renin activity. However, estrogen has also been shown to suppress components of the RAS, including ACE and the AT₁ receptor, perhaps achieving an overall balance to attenuate the development of hypertension and progression of other cardiovascular events. Various hypertensive models have marked gender differences in the expression of hypertension. Although the majority of the studies have focused on the relation of androgens to the development of blood pressure, there clearly remains strong evidence for the contribution of estrogens or their metabolites in cardiovascular regulation. For example, homozygous and heterozygous (mRen2)-27 male rats have blood pressures ∼100 and 50 mm Hg higher, respectively, than their female littermates. We and other groups extensively use the (mRen2)-27 transgenics to study the mechanisms of renin overexpression and the development of hypertension. However, to eliminate the variability of the outbred SD background, (mRen2)-27 transgenics were back-crossed into the inbred Lewis rat, creating the new mRen(2).Lewis strain. After 9 generations, characterization of the mRen(2).Lewis rat revealed essentially the same degree of hypertension as the original transgenics, but the congenics lacked the malignant hypertension and the inability to concentrate urine. Of particular interest, the mRen(2).Lewis strain also demonstrates a significant gender difference in the development of hypertension. Therefore, in the present studies, we tested the hypothesis that early depletion of estrogen...
in the congenic mRen(2).Lewis rats influences the development of blood pressure and the expression of the circulating and renal RAS components, as well as related mediators, including endothelin-1 and the reactive oxygen species (ROS) metabolite 8-isoprostane F_{2α}. In addition, we determined the influence of both estrogen replacement and selective blockade with the AT₁ antagonist olmesartan on blood pressure in the ovariectomized mRen(2).Lewis strain.

Methods

Heterozygous male and female mRen(2).Lewis rats were obtained from the Hypertension and Vascular Disease Center Transgenic colony at 5 weeks of age, and either a bilateral ovariectomy or sham surgery was performed on the female littermates. A separate group of ovariectomized (OVX)-mRen(2).Lewis was implanted with a 3-week 17β-estradiol pellet (1.0 mg pellet) subcutaneously after the ovariectomy and again 3 weeks later. These groups were killed at 11 weeks to assess both circulating and tissue RAS components as well as 17β-estradiol serum levels. Two additional groups of OVX-mRen(2).Lewis rats were either treated with the AT₁ antagonist olmesartan (1 mg/kg per day OS) for 4 weeks (weeks 12 to 16) to assess the influence of RAS blockade during the period of established hypertension or used as age-matched control animals. At the end of 16 weeks, the drug was completely removed from the drinking water and the rats were monitored for an additional 7 weeks. Finally, age-matched normotensive Lewis rats (Harlan Labs) were ovariectomized, and blood pressure was determined from week 5 to week 17. Systolic blood pressure (SBP) was measured in trained rats (mean of 5 determinations per data point) before and after treatment with a Narco Biosystems device. Animals were fed a powdered rat chow (Purina Mills) to provide a daily intake of 17 and 28 mEq of sodium and potassium, respectively, per 100 g of body weight. At the end of the study, animals were euthanized by decapitation without anesthesia, and tissues were rapidly removed for analysis. Rats were maintained on a 12-hour light/dark cycle (6 AM on, 6 PM off) at constant temperature and humidity in a facility approved by the Association for Assessment and Accreditation of Laboratory Animal Care. All animal experiments were performed in accordance with protocols of the Institutional Animal Care and Use Committee of Wake Forest University School of Medicine.

The concentration of Angiotensin (Ang) II was determined in the plasma, urine, and kidneys from control and treated rats, as described by Alldred et al.14 Urine was collected over a 24-hour period into 4% acetic acid and BHT. Excretion of 8-isoprostane F_{2α} (Cayman Chemicals) and endothelin-1 (ALPCO Diagnostics) were determined according to instructions for each assay kit. Serum estradiol concentrations were determined by RIA with a kit from Adaltis Italia S.P.A. Serum ACE activity was determined with the synthetic substrate Hip-His-Leu in the presence and absence of the ACE inhibitor lisinopril (10 μmol/L).14 Plasma renin concentration (PRC) was determined by addition of oxoanigoniotensinogen (nephrectomized rat plasma) incubated at either pH 6.5 or 72°C for 30 cycles followed by a final extension at 72°C for 5 minutes. EF1α primers were added after 10 cycles were completed. Products were separated on 6% polyacrylamide gels, and band intensities were quantified by phosphorimage analysis. The mRNA concentration was expressed as the ratio of eNOS or ACE to the control EF1α, to account for variations in the RT-PCR assay. We use EF1α because Ang II is known to regulate other "control" genes such as GADPH.

Statistical Analysis

All measurements are expressed as mean±SEM. Comparisons between the sham, ovariectomized, and treated rats were evaluated by ANOVA and the Dunnett post hoc analysis (StatMate). All other data were analyzed by the Student unpaired t test, and figures were constructed with GraphPad Prism analysis and statistical software. A probability value of <0.05 was required for statistical significance.

Results

Compared with the sham mRen(2).Lewis, the OVX oxycensions had an elevated blood pressure as early as week 6 (109±3.0 mm Hg versus 129±4.2 mm Hg) (Figure 1). Although the sham SBP plateaued by week 9 (139±2.5 mm Hg versus 141±3.9 mm Hg at week 11), the OVX-mRen(2).Lewis continued to have a higher blood pressure at week 9 (171±4.0 mm Hg) through week 11 (195±3.7 mm Hg). The estrogen replacement group also had a greater increase in blood pressure than the sham rats up to week 7 (139±2.3 mm Hg versus 115±3.9 mm Hg for Sham, P<0.01) and was similar to the OVX rats (145±3.7 mm Hg, 7 weeks). However, by week 9, the blood pressure began to decline (135±2.9 mm Hg) and was significantly lower (125±2.9 mm Hg, P<0.05) than either the Sham or OVX-Ren(2).Lewis at 11 weeks. Although not shown, ovariotectomy of the normotensive Lewis rats did not alter blood pressure (intact Lewis: 112±9.3 mm Hg, n=5 versus OVX-Lewis: 118±6.7 mm Hg, n=3; both groups at 12 weeks of age). Furthermore, the blood pressures in the OVX-mRen(2).Lewis rat were similar to that of the male mRen(2).Lewis at 11 weeks (205±9 mm Hg, n=5), suggesting that estrogen depletion at this age abolishes the gender difference in the mRen(2).Lewis rat.

Finally, in the female mRen(2).Lewis rats, serum estradiol levels at 11 weeks averaged 88±17 pg/mL for sham, <5.0 pg/mL in the OVX group, and 194±79 pg/mL with estrogen replacement. As shown in Figure 2A, estrogen depletion in the mRen(2).Lewis increased PRC approximately 2-fold compared with either the sham or estrogen-treated groups. Measurement of
mouse PRC revealed a similar level to that of rat renin after ovariectomy and estrogen replacement (Figure 2B). Serum ACE activity was also significantly higher in the OVX-mRen(2).Lewis as compared with the other two groups, although the estrogen-treated animals tended to have the lowest ACE activity (Figure 2C), consistent with the lower blood pressure in this group (see Figure 1). Also consistent with an increase in both renin and ACE, the circulating levels of Ang II were elevated to a similar degree compared with intact and estrogen-treated groups (Figure 2D). We also determined the free plasma concentration of 8-isoprostane F2 as an index of ROS but did not observe a difference between the OVX and estrogen-treated groups (26.8 ± 4.6 fmol/mL versus 36.5 ± 8.2 fmol/mL, respectively).

In terms of the renal RAS, urinary excretion and cortical tissue levels of Ang II were significantly increased in the OVX-mRen(2).Lewis rats (Figures 3A and 3B). The urinary excretion of both endothelin-1 (ET-1) and 8-isoprostane F2 were also elevated in the OVX group in comparison to either the sham or estrogen-treated rats (Figures 3C and 3D). Consistent with the increase in serum ACE activity and renal Ang II, both cortical and medullary levels of ACE mRNA were significantly higher in the OVX group as compared with the estrogen group (Figure 3E). Finally, we assessed mRNA levels of eNOS in the OVX-mRen(2).Lewis and the estrogen replacement group. The mRNA levels for eNOS (expressed as a ratio to EF1) were reduced 42% [0.273 ± 0.016 U versus 0.466 ± 0.073 U, P<0.01, n=6 to 7] in the renal medulla of the OVX-mRen(2).Lewis as compared with the estrogen-treated group. The overall cortical expression of eNOS was significantly lower than that in the medulla; however, estrogen depletion had no effect on cortical eNOS levels [OVX: 0.123 ± 0.013 U versus OVX+E2: 0.103 ± 0.011 U, P>0.05, n=6 to 7].

As shown in Figure 4, oral administration of olmesartan (1 mg/kg per day) for 2 weeks to 12-week OVX-mRen(2).Lewis rats substantially reduced blood pressure and, by 4 weeks, blood pressure was not different than the untreated normotensive female Lewis rats of similar age (113 ± 5.4 mm Hg, n=6 versus 118 ± 7 mm Hg for Lewis, n=5). In addition, we determined the blood pressure in this group of rats after the cessation of olmesartan treatment (week 16) for 7 weeks. By the end of week 23, the systolic blood pressures in the olmesartan-treated OVX-mRen(2).Lewis were still substantially reduced as compared with either that before treatment at 12 weeks (124 ± 4.1 mm Hg versus 201 ± 11 mm Hg, P<0.01) or a separate group of age-matched untreated OVX-mRen(2).Lewis at 16 weeks (190 ± 9 mm Hg, n=5) and 23 weeks (208 ± 12 mm Hg) but not different from that of the 16-week OVX-mRen(2).Lewis group receiving olmesartan (Figure 4).

Discussion

In the present study, we characterized the effects of estrogen depletion on the development of blood pressure and expression of the circulating and renal components of the RAS in the female mRen(2).Lewis rat—a monogenetic strain that overexpresses the mouse renin 2 gene. Similar to other hypertensive models and the original (mRen2)-27 transgenic strain, the mRen(2).Lewis rats exhibit a significant gender...
difference in the expression of blood pressure. Indeed, the systolic blood pressure in the heterozygous female mRen(2).Lewis rat is 40 to 50 mm Hg lower than male littermates. However, in contrast to estrogen depletion in young SHR, our findings reveal a significant effect of estrogen depletion on the development and maintenance of blood pressure in the mRen(2).Lewis rats. Indeed, estrogen depletion essentially abolished the gender difference in blood pressure that normally exists between the male and female mRen(2).Lewis rats. Low-dose estrogen (estradiol) replacement reversed the course of the development of hypertension and lowered blood pressure below that of the intact mRen(2).Lewis rat. Furthermore, chronic treatment with the AT1 receptor antagonist olmesartan normalized the blood pressure in the ovariecctomized mRen(2).Lewis. These findings clearly support recent studies that also found a protective role for estrogen in the development of hypertension in the Dahl S model maintained on either a low or high salt diet and the SHR fed a phytoestrogen-free high salt diet.

Previous studies in female (mRen2)-27 rats, the founder strain for the congenic mRen(2).Lewis rats, revealed differences in the blood pressure response after ovariectomy. Bachman et al reported that ovariectomy in 16-week heterozygous (mRen2)-27 reduced blood pressure by 20 mm Hg. The reduction in blood pressure was associated with a fall in both PRA and Ang II, as well as reduced expression of rat and mouse renin mRNA levels in the kidney. Although the effects of estrogen replacement were not determined in this study, the lower PRA after ovariectomy is consistent with a stimulatory effect of estrogen on renin. In contrast, Brosnihan et al found that ovariectomy had little effect on blood pressure in 12-week (mRen2)-27, but estrogen replacement reduced blood pressure as well as decreased ACE activity and mRNA levels of the enzyme in the lung, aorta, and kidney. In addition, the reduction in ACE was associated with a differential expression of plasma Ang peptides, reduced Ang II, and increased Ang-(1-7) that most likely reflects the ability of ACE to form Ang II and degrade Ang-(1-7). Similar to the latter study, the present results revealed increased plasma Ang II and serum ACE activity as well as increased rat PRC after ovariectomy. Moreover, estrogen replacement reversed the changes in these parameters as well as attenuated the development of hypertension. Apart from the background of the

Figure 3. Effects of ovariectomy (OVX) and estrogen (E2) replacement on renal angiotensin, endothelin-1, and isoprostane systems in mRen(2).Lewis rat. Tissue and urine samples were taken at the end of week 11. A, Renal cortex Ang II concentration; B, daily excretion of Angiotensin II; C, daily excretion of endothelin-1; D, daily excretion of isoprostane; E, mRNA levels of ACE in renal cortex and medulla. Data are mean±SEM, **P<0.01 or *P<0.05 vs OVX+E2 or sham; n=6 to 7.
AT1 receptor in the vasculature, adrenal gland, and kidney, as intact or OVX-Lewis rat. Estrogen reduces the expression of the systolic blood pressures in the olmesartan-treated OVX-mRen(2).Lewis rats. Rahimian et al.23 effects of exogenous estrogen to attenuate the development of Dahl S rats. The influence of NOS may also explain the delayed hypertension in the OVX-mRen(2).Lewis rats. Cowley and colleagues22 showed that reduced NO production in the renal medulla significantly influences blood pressure in the Dahl S rats. The influence of NOS may also explain the delayed effects of exogenous estrogen to attenuate the development of hypertension in the OVX-mRen(2).Lewis rats. Rahimian et al.23 observed that 3 weeks of estrogen treatment was required to restore NO activity after ovariectomy. This treatment period corresponds to the time point for the development of blood pressure to diverge in the present study. Studies are in progress to determine whether the treatment of ovariectomized mRen(2).Lewis with olmesartan restores the renal expression of eNOS. Regarding the influence of other mediators, we do not know whether alterations in the renal excretion of ET-1 and isoprostanes are directly influenced by estrogen or an activated Ang II–AT1 axis. Ang II–dependent hypertension is associated with both increased ET-1 and activated ROS.24–28 Furthermore, RAS blockade and estrogen attenuate expression of both systems.28–32 However, the issue of enhanced renal ET-1 is complicated by the presence of both ET-A and ET-B receptors in the kidney that mediate opposing actions.33 Thus, the balance of these two receptors may dictate whether increased ET-1 contributes to or counters the increase in blood pressure after estrogen depletion. In addition, the effects of estrogen depletion may encompass increased ROS in the kidney that may further diminish the bioavailability of NO.32,34 Additional studies to assess whether the blockade of these two systems contributes to the increase in blood pressure or alters renal status in the mRen(2).Lewis rat are also in progress.

Finally, an unanticipated finding of the present study was the persistent effect of olmesartan treatment on blood pressure once the antagonist was withdrawn. In the ovariectomized mRen(2).Lewis, the systolic pressures were still markedly reduced (~36%) at 7 weeks after cessation of olmesartan administration and were not different than the blood pressures determined at the end of the 4-week treatment period (~42%). Previous studies, all performed in the SHR, clearly showed that RAS blockade with either an ACE inhibitor or ARB exhibits similar effects, provided that treatment is initiated at an early age (3 to 4 weeks) before the development of hypertension.35–38 Furthermore, the long-lasting effects are generally not shared by other anti-hypertensive drugs despite a similar reduction in pressure during the treatment period.39–41 In contrast, studies in the Milan and Lyon hypertensive rats revealed that RAS blockade had no persistent effect on blood pressure despite marked improvements in indexes of vascular and renal injury.42–43 To our knowledge, the present study is the first to demonstrate a substantial effect on blood pressure after cessation of AT1 receptor blockade in adult females with established hypertension and in a hypertensive model other than the SHR.38 Future studies are necessary to ascertain the mechanism and the duration of the persistent effects of olmesartan in the mRen(2).Lewis rat. In this regard, it will also be of interest to determine whether cessation of estrogen treatment in the ovariectomized mRen(2).Lewis rat also exhibits a persistent effect on blood pressure similar to that of the AT1 antagonist.

Perspectives
The role of estrogen to influence the cardiovascular system, particularly in a hypertensive setting, is complex. The mRen(2).Lewis strain represents a model of monogenetic Ang II–dependent hypertension in which estrogen depletion has a profound influence on the development of blood pressure, most likely through attenuating activation of the RAS and other downstream mediators. The early influence of estrogen in the current studies may be more relevant to the status of estrogen in the premenopausal versus postmenopausal period. Kaplan and colleagues44 have demonstrated that reduced levels of estrogen arising from stress in the premenopausal period are associated with increased incidence of cardiovascular disease. Thus, the early loss or reduction of estrogen may play a more significant role in the
setting and progression of cardiovascular disease than estrogen loss in the postmenopausal state. 45

Acknowledgments

This work was supported by in part by grants from the National Heart, Lung, and Blood Institute, NIH (HL-S1952), a grant-in-aid from the American Heart Association, and the Sankyo Pharmaceutical Corporation.

References

Estrogen or the AT1 Antagonist Olmesartan Reverses the Development of Profound Hypertension in the Congenic mRen2.Lewis Rat
Mark C. Chappell, Patricia E. Gallagher, David B. Averill, Carlos M. Ferrario and K. Bridget Brosnihan

Hypertension. 2003;42:781-786; originally published online July 21, 2003; doi: 10.1161/01.HYP.0000085210.66399.A3
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/42/4/781

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/