Dopamine D$_1$ Receptor Augmentation of D$_3$ Receptor Action in Rat Aortic or Mesenteric Vascular Smooth Muscles

Chunyu Zeng, Dan Wang, Zhiwei Yang, Zheng Wang, Lareano D. Asico, Christopher S. Wilcox, Gilbert M. Eisner, William J. Welch, Robin A. Felder, Pedro A. Jose

Abstract—Dopamine is an important modulator of blood pressure, in part, by regulating vascular resistance. To test the hypothesis that D$_1$ and D$_3$ receptors interact in vascular smooth muscle cells, we studied A10 cells, a rat aortic smooth muscle cell line, and rat mesenteric arteries that express both dopamine receptor subtypes. Fenoldopam, a D$_1$-like receptor agonist, increased both D$_1$ and D$_3$ receptor protein in a time-dependent and a concentration-dependent manner in A10 cells. The effect of fenoldopam was specific because a D$_1$-like receptor antagonist, SCH23390 (10$^{-7}$ M/24 h), completely blocked the stimulatory effect of fenoldopam (10$^{-7}$ M/24 h) (D$_1$ receptor: control = 21 ± 1 density units [DU]; SCH23390 = 23 ± 2 DU; fenoldopam = 33 ± 2 DU; fenoldopam + SCH23390 = 23 ± 2 DU; n = 10). D$_1$ and D$_3$ receptors physically interacted with each other because fenoldopam (10$^{-7}$ M/24 h) increased D$_1$/D$_3$ receptor coimmunoprecipitation (35 ± 5 versus 65 ± 5 DU; n = 8). A D$_3$ receptor agonist, PD128907, relaxed mesenteric arterial rings independent of the endothelium, effects that were blocked by a D$_3$ receptor antagonist, U99194A. Costimulation of D$_1$ and D$_3$ receptors led to additive vasorelaxation. We conclude that the D$_1$ receptor regulates the D$_3$ receptor by physical interaction and receptor expression. D$_1$ receptor stimulation augments D$_3$ receptor vasorelaxant effects. An interaction of D$_1$ and D$_3$ receptors may be involved in the regulation of blood pressure. *(Hypertension. 2004; 43:673-679.)*

Key Words: receptor ■ dopamine ■ arteries ■ blood pressure

Dopamine, a well known neurotransmitter in the central nervous system, has recently been characterized as an important modulator of blood pressure, sodium balance, and renal and adrenal function and is relevant to the pathogenesis and/or maintenance of hypertension.$^{1-4}$ Dopamine receptors are classified into 2 families: the D$_1$-like receptor subfamily includes the D$_1$ and the D$_3$ receptor, while the D$_2$, D$_3$, and D$_4$ receptors belong to the D$_2$-like subfamily. Whereas the D$_1$-like receptors couple to the stimulatory G protein, G$_s$, and thus activate adenylyl cyclase, all of the D$_2$-like receptors couple to the inhibitory G protein, G$_i$/G$_o$, and inhibit adenylyl cyclase and calcium channels and modulate potassium channels.$^{1-4}$

Both D$_1$ and D$_3$ receptors are expressed in vascular smooth muscle cells, and the activation of the D$_1$ receptor relaxes blood vessels and decreases blood pressure.5,6 However, the effect of D$_3$ receptors on resistance vessels is not clear. A low intravenous dose of R(+)-7-hydroxymethylamino-aminotetralin (7-OH-DPAT), a D$_3$-like agonist with a 50-fold selectivity for the D$_3$ over the D$_1$ receptor, constricts postglomerular arterioles without affecting systemic blood pressure.4 A higher dose, however, decreases blood pressure.4 To test the hypothesis that D$_1$ and D$_3$ receptors interact in vascular smooth muscle cells, we studied the effect of fenoldopam, a D$_1$-like receptor agonist, on D$_1$ and D$_3$ receptor expressions in rat thoracic aorta-derived smooth muscle cell line (A10).7 We also studied the effect of D$_1$ and D$_3$ receptor agonists on the wall tension of rat mesenteric arterial rings.

Methods

Cell Culture and Sample Preparation

Embryonic thoracic aortic smooth muscle cells7,8 (passage 10 to 20) from normotensive Berlin-Druckrey IX (A10; CRL 1476, ATCC) were cultured at 37°C in 95% air/5% CO$_2$ atmosphere in Dulbecco modified eagle medium.

A10 cells (80% confluence) and mesenteric arteries from sodium pentobarbital-anesthetized Wistar-Kyoto (WKY) rats (Taconic, Germantown, NY) were homogenized in ice-cold lysis buffer (5 mL/g tissue) (20 mmol/L Tris-HCl, pH 7.4; 2 mmol/L EDTA, pH 8.0; 2 mmol/L EGTA; 100 mmol/L NaCl; 10 µg/mL leupeptin; 10 µg/mL aprotinin; 2 mmol/L phenylmethylsulfonyl fluoride; 1% NP-40), sonicated, kept on ice for 1 hour, and centrifuged at 16 000g for 30 minutes. All samples were stored at −70°C until use. All experiments were approved by the Georgetown University Animal Use and Care Committee.
Immunoblotting
The antibodies are polyclonal, purified, and antipeptides. The rat D₁ receptor immunizing peptide (299-GSEEQTQPPC-307) (Research Genetics)⁹–¹² and the rat D₁ receptor immunizing peptide (228-QPP SPG QTH GGL KRY YSI C-306) are located on the third extracellular loop of their corresponding receptors.¹³,¹⁴ The specificity of these antibodies has been reported.⁹–¹⁴ A10 cells were treated with vehicle (dH₂O), a D₁-like receptor agonist (fenoldopam) (Sigma, St. Louis, Mo),³⁵,⁶-⁹,¹¹,¹³-¹⁷ or a D₁-like receptor antagonist (SCH23390) (Sigma, St. Louis, Mo),¹¹ at the indicated concentrations and times. The transblots were probed with the D₁ (1:250) (Alpha Diagnostic International, San Antonio, Tex) or the D₃ receptor antibody (Research Genetics) (1:800). The amount of protein transferred onto the membranes was determined by Ponceau-S staining and immunoblotting for α-actin.

Immunoprecipitation
A10 cells were incubated with vehicle (dH₂O) or fenoldopam (10⁻⁷ M) for 24 hours, as described.⁹-¹⁴ Equal amounts of cell lysates (200 µg protein/mL supernatant) were incubated with affinity-purified anti-D₁ receptor antibodies (2 µL/mL) for 1 hour and protein-G agarose at 4°C for 12 hours. The immunoprecipitates were suspended in sample buffer (2X sample buffer: 100% glycerol 2.0 mL; 0.5 mmol/L Tris-HCl 2.5 mL, pH 6.8; 10% SDS 4 mL) [final concentration=0.14 mmol/L]; 2 mg/mL bromophenol blue 0.5 mL; 2-mercaptoethanol 0.5 mL, added dH₂O until total volume 10 mL), boiled for 10 minutes, and subjected to immunoblotting with the D₁ receptor antibody. To determine the specificity of the bands found on the immunoblots, preimmune serum of D₁ receptor antibody (negative control) and D₁ receptor antibodies (positive control) were used as the immunoprecipitates instead of the D₁ receptor antibodies.

Immunohistochemistry
The rat mesenteric artery, cleared of blood with ice-cold oxygenated saline and kept in Histochrome (Amresco, Solon, Ohio) for 1 to 2 days at 4°C, were sectioned (4 µm), embedded in paraffin, and mounted on slides.¹⁷ The tissue was deparaffinized and rehydrated by successive incubations in xylene, 100% ethanol, 95% ethanol, 75% ethanol, and phosphate-buffered saline. The tissue was then briefly treated with 0.1% Triton X-100, 10 mmol/L sodium citrate (pH 6.0), and blocked sequentially with 5% goat serum in phosphate-buffered saline overnight, at 4°C. The tissue sections were incubated with anti-D₃ receptor antibody (1:200) at room temperature for 1.5 hours. After staining with Vector VIP substrate kit, the slides were permanently mounted. The primary antibodies, previously incubated with the immunizing peptides (1:10) at 4°C for 12 hours, were used as controls.

Mesenteric Artery Study
A portion of intestine and mesentery removed from male WKY rats (300 to 350 g, n=12) anesthetized with sodium pentobarbital (50 mg/kg) was kept in ice-cold physiological salt solution (PSS). Four segments of third-generation resistance vessels were dissected under an operating microscope (Olympus, SZ40) and mounted as ring preparations on four 40-µm stainless-steel wires in an isometric Mulvany-Halpern small-vessel myograph (model M610M; J.P. Trading, Science Park, Aarhus, Denmark).¹⁸ One wire was attached to a force transducer and the other to a micrometer.¹⁸,¹⁹ This arrangement enabled the wall tension to be measured at a predetermined internal circumference. Both the dissection and mounting of the vessels were performed in ice-cold (4°C) PSS.

After mounting, the arterial ring was equilibrated in PSS for 1 hour at 37°C at a wall tension of 0.1 mN/mm. Based on preliminary data from >100 vessels, we confirmed that a normalized circumference (L₀=0.9 Lₘₐₓ) results in maximal active force development. The vessels were studied at L₀ in all subsequent protocols.

After testing the constrictor effects of high-potassium PSS (KPSS, 125 mmol/L) or PSS containing 10⁻⁴ M norepinephrine, the vessels were rinsed 3 times with fresh PSS and allowed to recover to baseline for 15 minutes. Maximal contraction of the vessel was then achieved with 10⁻³ M norepinephrine and KPSS. After reaching a plateau, relaxation was induced with 10⁻⁵ M of acetylcholine to test endothelium-dependent relaxation. Ligand-induced relaxation was assessed by cumulative addition of drugs to the rings, which were submaximally (50% to 80%) preconstricted with norepinephrine or KPSS. The receptor specificities of drug effect were determined by incubating the vessels for 30 minutes with a D₁-like antagonist, SCH23390 (10⁻⁶ M), or the D₃ receptor antagonists, U99194 (10⁻⁶ M) and (+)-UH232 (Tocris Cookson Inc, Ellisville, Mo) (10⁻⁶ M).¹⁹,²⁴ To investigate the mechanisms of ligand-mediated vasorelaxation, studies were performed in vessels preincubated for 30 minutes with nifedipine (Sigma)²⁵ or apamin (Sigma) (10⁻⁶ M; a large conductance calcium-activated K⁺ channel blocker)²⁶ and charybdotoxin (Sigma) (10⁻⁴ M; a large conductance calcium-activated K⁺ channel blocker).²⁶

To determine the endothelium dependence of any D₁ or D₃ receptor agonist-induced relaxation, vessels with or without endothelium were studied. The endothelium was removed by pulling a hair along the vessels; successful denudement of the endothelium was confirmed by an absence of relaxation by acetylcholine.²⁷ To test any interaction between D₁ and/or D₃ receptors, PD128907 (10⁻⁸ to 10⁻⁷ M) were added to the arterial rings preconstricted by norepinephrine or KPSS.

Figure 1. Specificity of D₃ receptor antibodies. Cell lysate proteins (100 µg) from mesenteric artery (lane1) and A10 cells (lane 2) were subjected to immunoblotting with anti-D₃ receptor antibody (1:250). In A10 cells and mesenteric artery, the 45-kDa band was no longer visible when the antibody was preadsorbed with the immunizing peptide (1:20 w/w incubation for 12 hours). The molecular sizes are given.

Statistical Analysis
The data are expressed as mean±SEM. Comparison within groups was made by repeated measures ANOVA (or paired t test when only 2 groups were compared), and comparison among groups (or t test when only 2 groups were compared) was made by factorial ANOVA with Duncan test. Corresponding periods between 2 different groups were analyzed by independent t test. Fenoldopam and PD128907 sensitivity are expressed as pED₅₀, which is the (-log) concentration of the drug required to produce 50% of the maximum response. Relaxation responses to fenoldopam and PD128907 are expressed as a percentage decrease from the maximum contractile response. A value of P<0.05 was considered significant.

Results
Specificity of Receptor Antibodies
Specific D₁ receptor (~45 kDa) bands were found in A10 cells (Figure 1, lane 2), because they were no longer visible when the
antibodies were pre-adsorbed by the immunizing peptide. The immunoblotting patterns of the D1 and D3 receptors were similar to those in our previous reports.9,11,13,14,17

D1 Receptors Increase D3 Receptor Protein Expression in A10 Cells

The D1-like receptor agonist, fenoldopam, increased D3 receptor protein in a concentration-dependent and time-dependent manner. The stimulatory effect at 24 hours was evident at 10^{-9} M (Figure 2A). The stimulatory effect of fenoldopam (10^{-7} M) was noted at 16 hours and maintained for at least 24 hours (Figure 2B).

The specificity of fenoldopam as a D1-like receptor agonist was determined by studying the effect of a D1-like receptor antagonist, SCH23390. Consistent with the data shown in Figure 2A and 2B, fenoldopam (10^{-7} M) increased D1 receptor protein (control=21±1 DU, fenoldopam=33±2 DU; n=10; P<0.05) SCH23390 (10^{-7} M) by itself had no effect on D1 receptor protein (23±2 DU) but reversed the stimulatory effect of fenoldopam on D3 receptor protein expression (fenoldopam+SCH23390=23±2 DU; n=10) (Figure 2C). To determine whether there is mutual receptor interaction, A10 cells were treated with PD128907 (10^{-10} M to 10^{-5} M) for 24 hours and immunoreactive D1 receptor protein was measured. Unlike the stimulatory effect of D1 receptors on D3 receptor expression, we did not find any effect of D3 receptors on D1 receptor expression (data not shown).

D1-Like Agonist Increases D1 Receptor Protein Expression in A10 Cells

To investigate the effect of a D1-like receptor agonist on the protein expression of its own receptor, A10 cells were incubated with fenoldopam. Immunoblots showed that fenoldopam also increased D1 receptor protein in a time-dependent (2 to 30 hours) and concentration-dependent (10^{-11} to 10^{-8} M) manner. The stimulatory effect (24 hours) was evident at 10^{-8} M. The stimulatory effect of fenoldopam (10^{-7} M) was noted at 8 hours and maintained for at least 30 hours (Figure 3A and B).

D1 Receptor Physically Interacts With the D3 Receptor in A10 Cells

To determine whether there is a physical interaction between the D3 and the D1 receptor, D1 receptors were first immunoprecipitated with anti-D1 receptor antibodies, and then the immunoprecipitates were probed with anti-D3 receptor antibodies. The 45 kDa band, representing the coimmunoprecipitated D3 and D1 receptors, was increased by a 24-hour treatment with fenoldopam (10^{-7} M) (control=35±5 DU, fenoldopam=65±5 DU; P<0.01, n=8) (Figure 4).

D1 Receptor Exists in Rat Mesenteric Artery

We also determined whether the D1 receptor is expressed in rat mesenteric arteries. Consistent with the results in A10 cells, the D1 receptor immunoblots of mesenteric artery homogenates also showed a 45-kDa band (Figure 1, lane 1). Immunohistochemistry showed D1 receptors in the tunica media and intima (Figure 5). Both the immunoblotting and immunohistochemistry results were specific, because the immunoblot (Figure 1, lane 1) and immunostaining (Figure 5) were no longer visible when the antibodies were pre-adsorbed with the D1 receptor immunizing peptide.

Costimulation of D1 and D3 Receptors Has an Additive Vasorelaxant Effect in the Rat Mesenteric Artery

Effect of Agonists

We next determined the effect of D1 and D3 receptor agonists on the wall tension of rat mesenteric artery rings. The D1,
fenoldopam and D3 receptor agonists (PD128907 and 7-OH-DPAT) had no vasoconstrictor effect but relaxed arterial rings preconstricted with KPSS in a dose-dependent manner; the vasorelaxant effects were evident at 10⁻⁶ M (fenoldopam: Emax [maximum relaxation rate] = 83% ± 11%, pED₅₀ = 5 ± 0.2, n = 12; PD128907: Emax = 76% ± 5%, pED₅₀ = 5 ± 0.1, n = 12; 7-OH-DPAT: Emax = 87% ± 2%, pED₅₀ = 7 ± 0.2, n = 4) (Figure 6A). However, the ability of fenoldopam or PD128907 to relax vessels preconstricted with 10⁻⁴ M norepinephrine was markedly impaired when compared with vessels preconstricted with KPSS (pED₅₀,

Figure 3. Effect of fenoldopam on D1 receptor protein expression in A10 cells. Concentration response (24 hours) (A) and time course (10⁻⁴ M) (B) of D1 receptor protein expression in A10 cells treated with fenoldopam. All immunoblotting results are expressed as relative DU (n = 6 to 7; *P < 0.05 versus control (C), ANOVA, Duncan test).

(fenoldopam) by guests on December 30, 2017

Figure 4. Effect of fenoldopam on the coimmunoprecipitation of D₃ and D₁ receptors in A10 cells. The cells were incubated with fenoldopam (10⁻⁴ M) for 24 hours. Thereafter, the samples were immunoprecipitated with anti-D₃ receptor antibodies and immunoblotted with anti-D₁ receptor antibodies (*P < 0.05 vs control, n = 8, t test). One immunoblot (45 kDa) is depicted in the inset: (lane 1 = positive control, lane 2 = negative control, lane 3 = vehicle-treated A10 cells, lane 4 = fenoldopam-treated A10 cells).

Figure 5. Immunohistochemical staining of D₃ receptors in rat mesenteric artery. D₃ receptor immunostaining, present in tunica media and intima, was no longer visible when the D₃ receptor antibody was preadsorbed with the immunizing peptide (1:10 w/w, incubation for 12 hours). These studies were repeated at least 3 times.

fenoldopam: norepinephrine = 4 ± 0.2, KPSS = 5 ± 0.2, P < 0.05; pED₅₀; PD128907: norepinephrine = 4 ± 0.2, KPSS = 5 ± 0.1, n = 12, P < 0.01).

The D₁ and D₃ receptor agonist vasorelaxant effects were endothelium-independent, because the vasorelaxant effects of fenoldopam and PD128907 were not affected by the presence or absence of the endothelium (10⁻⁶ M PD128907: with endothelium = 25% ± 4%; without endothelium = 24% ± 6%; 10⁻⁶ M fenoldopam: with endothelium = 29% ± 5%, without endothelium = 26% ± 6%, P > 0.05, n = 12) (Figure 6B and C).

Effect of Antagonists

The vasorelaxant effects of D₁ and D₃ receptors were specific, because the D₁-like receptor antagonist, SCH23390 (2% ± 1%), D₃ receptor antagonists, U99194A (2% ± 0.02%) and (+)-UH232 (9% ± 3%), did not have any effect by themselves but blocked the vasorelaxant effects of their respective agonists: fenoldopam (10⁻⁶ M) (fenoldopam = 29% ± 5%, fenoldopam+SCH23390 = 3% ± 3%, P < 0.01, n = 12); PD128907 (10⁻⁶ M) (PD128907 = 24% ± 6%, PD128907+U99194A = 4% ± 2%, P < 0.01, n = 12), 7-OH DPAT (7-OH-DPAT = 90% ± 2%, 7-OH-DPAT+U99194A = 11% ± 4%, P < 0.01, n = 4) (Figure 6B, C, and D).

Effect of combined D₁ and D₃ receptor stimulation is described herein. PD128907-induced vasorelaxation was increased in vessel preincubated with fenoldopam compared with vehicle (% relaxation at 10⁻⁶ M: fenoldopam = 40% ± 5%, vehicle = 24% ± 6%, n = 12, P < 0.01; pED₅₀; fenoldopam = 6 ± 0.1, vehicle = 5 ± 0.1, n = 12, P < 0.05; Figure 6E). These data indicate that D₁ and D₃ receptor have additive vasorelaxant effects.

Mechanism of D₁ and D₃ receptor-induced vasorelaxation is described herein. In norepinephrine preconstricted vessels, fenoldopam-induced and PD128907-induced vasorelaxation was increased in vessel preincubated for 30 minutes with nifedipine (10⁻⁶ M), indicating that the decreased vasorelaxant effects of fenoldopam and PD128907 in norepinephrine-preconstricted vessels may be related to a norepinephrine-induced increase in intracellular calcium (Figure 6F and G). The vasodilatory effect of PD128907 was abrogated by apamin and charybdotoxin, indicating involvement of small-conductance and/or large-conductance calcium-activated potassium channels (Figure 6G).
The effect of D₃ receptors on arterial vascular tone is not well understood. Quinpirole, a D₃ receptor agonist with a 35-fold selectivity over the D₂ receptor, has no vascular relaxant effect on mesenteric arteries. Another D₃ receptor agonist, pramipexole, with a 60 selectivity over the D₂ receptor, decreases vascular resistance, although part of the effect could be accounted for by an interaction with the D₁ receptor. In anesthetized rats, the systemic infusion of 7-OH-DPAT, a D₃ receptor agonist with a 50-fold selectivity over the D₂ receptor, decreases renal blood flow by postglomerular constriction, resulting in an increase in glomerular filtration rate. In conscious dogs, the intrarenal arterial infusion of quinpirole also decreases renal blood flow, but glomerular filtration rate is decreased as well. The reason for these apparent discrepancies is not clear. However, the effect of D₂-like receptors on vascular tone may vary depending on the resisting tone and the arterial segment being studied. For example, D₁ receptor agonist increases the vascular tone of the rat tail artery. In other vessels, including the renal artery, D₂ receptors are vasodilatory. Prejunc- tional D₂-like receptors are vasodilatory whereas postjunc- tional D₂-like receptors can induce vasoconstriction when resting vascular tone is low or vasodilation when resting vascular tone is high.

Our studies show that in the maximally vasorelaxed mesenteric artery, 2 different D₃ receptor agonists, PD128907, with a 120-fold selectivity over the D₂ receptor, and 7-OH-DPAT, have no effect on vascular contractility. However, when the mesenteric rings are preconstricted, the PD128907, 7-OH-DPAT, and fenoldopam, by themselves,
cause vasorelaxation. As compared with vessels preconstricted with norepinephrine, the D1 and D3 vasorelaxation is greater in vessels preconstricted with potassium chloride. The ability of norepinephrine to impair the vasodilatory effects of dopamine has been reported.33 The decreased vasodilator effect of D3 agonists in vessels preconstricted with norepinephrine may be caused by an increase of intracellular calcium by activation of α1-adrenergic receptors.34,35 Our studies show that the vasorelaxant effects of fenoldopam (D3 receptor agonist) and PD128907 (D1 receptor agonist) are enhanced by calcium channel blockade with nifedipine. The vasodilatory effect of D1 receptors may also involve potassium channels (small-conductance and/or large-conductance calcium activated potassium).36,37 Additionally, norepinephrine can also compete with the agonists for dopamine receptor occupancy.38,39

The vasorelaxant effect of dopamine in the rabbit pulmonary artery has been reported to be endothelium-dependent and endothelium-independent.40 However, in our studies, despite the presence of D1 receptors in the intima, the vasodilatory effects of the D1 and D3 receptor agonists are endothelium independent. The function of the D3 receptor in endothelial cells is not clear, but D3 receptors have cell-protective properties.41 In human brain endothelial cells,42 the D2 agonist, PD128907, inhibits superoxide production, determined by cytochrome c reduction test,43 an effect that is blocked by a D2 antagonist, U99194A, which by itself does not have any effect (Z. Yang, C. Zeng, K.S. Kim, P.A. Jose, unpublished data, 2003).

The simultaneous stimulation of D1 and D3 receptors causes a vasorelaxation that is additive rather than synergistic. This may indicate that D1 and D3 receptors induce vasorelaxation by different mechanisms. Our studies also indicate that the vasorelaxation of the mesenteric artery is probably caused by activation of postjunctional rather than prejunctional dopamine receptors, because neither D1 receptor nor D3 receptor is expressed in the tunica adventitia, where the nerve supply terminates. The reason for the inability of others to demonstrate D3 receptors in vascular smooth muscles is not clear.44

We find that D1 and D3 receptors coimmunoprecipitate, and that coimmunoprecipitation is increased by D1 receptor stimulation. There are 2 possible explanations for this observation: increased D3 and D1 receptor expression, per se, or an increased physical interaction between D1 and D3 receptors. This interaction occurs only after several hours of treatment and may explain the absence of synergism in the acute studies in mesenteric vessels. Further studies are needed to determine whether the increased interaction between these 2 receptors is a direct or an indirect mechanism. However, homooligomerization or heterooligomerization of several G protein-coupled receptors have been reported.45,46

In summary, we have demonstrated that the D3 receptor regulates the D1 receptor by physical interaction and receptor expression. D3 receptor stimulation augments D1 receptor vaso-dilatory effects. A D3/D1 receptor interaction may be involved in the regulation of blood pressure.

Perspectives

The vasodilator effect of dopamine via D1-like receptors is mediated mainly by cAMP/protein kinase A.47,48 It seems paradoxical that the D1 receptor dilates the mesenteric artery because D1-like receptors decrease while D3-like receptors increase cAMP production.1–3 D1 receptors linkage to adenylyl cyclase inhibition is weak, unless adenylyl cyclase V is present.49 Adenylyl cyclase isoform V has been shown in rat pulmonary arterial smooth muscles but not in aortic smooth muscles.50 Therefore, it is likely that the D1 receptor-mediated vasorelaxation in vascular smooth muscle cells is caused by its ability to stimulate K+ channels.45 Under these conditions, the vasorelaxant effects of D1-like receptors caused by cAMP/PKA may be additive to the vasorelaxant effect of D3 receptors caused by stimulation of K+ channels.36,37

Acknowledgments

These studies were supported in part by grants from the National Institutes of Health, HL 074940, HL 23081, DK 39308, HL 08686, DK 52612, and HL 62211.

References

Dopamine D₁ Receptor Augmentation of D₃ Receptor Action in Rat Aortic or Mesenteric Vascular Smooth Muscles

Chunyu Zeng, Dan Wang, Zhiwei Yang, Zheng Wang, Lareano D. Asico, Christopher S. Wilcox, Gilbert M. Eisner, William J. Welch, Robin A. Felder and Pedro A. Jose

Hypertension. 2004;43:673-679; originally published online February 9, 2004; doi: 10.1161/01.HYP.0000118958.27649.6f

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/43/3/673

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Hypertension* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Hypertension* is online at:
http://hyper.ahajournals.org/subscriptions/