Effects of Heart Rate Changes on Arterial Distensibility in Humans

To the Editor:

Dependence of arterial stiffness on heart rate, claimed by Giannattasio et al., runs counter to classic studies, which were previously discussed in relation to conflicting data obtained with one method used to measure aortic pulse wave velocity. There is a potential flaw in the method applied by Giannattasio et al in their determination of carotid and radial artery distensibility at different heart rates. They measured diameter change of the target artery, but pressure pulsation at a distal site (brachial pressure for carotid, finger pressure for radial artery). Errors inherent in distal pressure measurement have been stressed in a recent consensus document but were considered by authors to be minimal. We disagree. In similar studies by Wilkinson et al., there was an average 35% fall in central pulse pressure, compared with brachial, when heart rate was increased from 60 to 110/min by pacing. Giannattasio et al quoted an early evaluation of the Finapres system and considered this accurate for their purposes, but this study did not test response to change in heart rate. In a later manuscript by the developers of Finapres, a marked heart rate difference was noted for systolic pressure between noninvasive finger and brachial intraarterial pressure (20 mm Hg difference for heart rate change of 40 bpm). The differences in distensibility calculated by Giannattasio et al were at the margin of statistical significance. Given the problems in estimating pulse pressure at the site of diameter measurement and the likelihood that this was overestimated, we continue to rely on the previous work, which showed no significant dependence of arterial stiffness on heart rate.

Michael F. O’Rourke
Audrey Adji
St. Vincent’s Clinic,
University of New South Wales,
Australia


Response

We have discussed the issue raised by Michel O’Rourke and Audrey Adji concerning our paper in which we outlined several arguments in favor of the conclusion that the difference between the blood pressure and arterial distensibility measuring sites did not detract from the observation that an increase in heart rate was accompanied by arterial stiffening. We wish to further emphasize the following, however. (1) Increasing heart rate reduced not only distensibility in the carotid but also in the radial artery, ie, a vessel close to the finger where blood pressure was measured. We have previously shown that finger blood pressure measure-


Effects of Heart Rate Changes on Arterial Distensibility in Humans
Michael F. O'Rourke and Audrey Adji

Hypertension. 2004;43:e10-e11; originally published online January 26, 2004;
doi: 10.1161/01.HYP.0000116289.91160.73
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/43/3/e10

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/