Asymptomatic Left Ventricular Systolic Dysfunction in Essential Hypertension
Prevalence, Determinants, and Prognostic Value

Paolo Verdecchia, Fabio Angeli, Roberto Gattobigio, Mariagrazia Sardone, Carlo Porcellati

Abstract—Prevalence, determinants, and prognostic value of asymptomatic left ventricular systolic dysfunction (LVSD) in uncomplicated subjects with essential hypertension are still incompletely known. We studied 2384 initially untreated subjects with hypertension, no previous cardiovascular disease, and no symptoms or physical signs of congestive heart failure (CHF). These subjects were studied at entry and followed for up to 17 years (mean 6.0). Asymptomatic LVSD (ALVSD), defined by an echocardiographic ejection fraction <50%, was found in 3.6% of subjects. Cigarette smoking (P=0.013), increased left ventricular (LV) mass (P=0.001), and higher 24-hour heart rate (P=0.014) were independent correlates of ALVSD. During follow-up, a first cardiovascular event occurred in 227 subjects, and 24 of these events were hospitalizations for symptomatic CHF. Incidence of CHF per 100 persons per year was 0.12 in patients without and 1.48 in patients with ALVSD (log-rank test P=0.0001). In a Cox model, after adjustment for age (P=0.0001), LV mass (P=0.0001), and cigarette smoking (P=0.039), LVSD conferred a markedly increased risk for CHF (odds ratio, 9.99; 95% confidence interval, 3.67 to 27.2). Incidence of coronary (0.84 versus 0.62×100 person years) and cerebrovascular (0.80 versus 0.62×100 person years) events did not differ (all P=NS) between subjects with and without ALVSD. ALVSD is a potent and early marker of evolution toward severe CHF requiring hospitalization in subjects with essential hypertension. (Hypertension. 2005;45:412-418.)

Key Words: heart failure, ventricular function, left, echocardiography, hypertrophy, blood pressure monitoring, ambulatory

Hypertension is a potent risk factor for congestive heart failure (CHF).1 According to the American College of Cardiology/American Heart Association (ACC/AHA) practice guidelines for evaluation and management of chronic CHF in the adult, all hypertensive subjects without symptoms of CHF and without structural heart disease should be classified as belonging to stage A, which denotes a high risk for CHF, whereas those without symptoms of CHF but with structural heart involvement denoted, for instance, by left ventricular (LV) hypertrophy, should be classified as belonging to stage B.2 Development of overt CHF may be preceded by a phase of asymptomatic LV systolic dysfunction (ALVSD).3,4 Diagnosis of ALVSD is important because treatment with angiotensin-converting enzyme (ACE) inhibitors may delay progression toward overt CHF in these subjects.5,6 In the general population, prevalence of ALVSD has been estimated at ~2% in most studies, a figure not dissimilar from that of overt CHF.7–12

Many hypertensive subjects without symptoms or physical signs of CHF should thus be considered for screening of ALVSD, an argument that rises cost-effectiveness considerations.12 However, important aspects including prevalence, determinants, and prognostic value of ALVSD in the specific setting of essential hypertension are poorly known because most available studies have been performed in the general population.7–12

Consequently, the present study was undertaken with the aim to address the clinical value of ALVSD determined by echocardiography in a large group of subjects with essential hypertension, including the Progetto Ipertensione Umbria Monitoraggio Ambulatoriale (PIUMA) database.13–15 We sought to determine prevalence and determinants of ALVSD and its contribution to the long-term risk of overt CHF and other major cardiovascular adverse events.

Methods

The PIUMA study, initiated in June 1986, is a prospective observational registry in initially untreated subjects with essential hypertension.13–15 Entry criteria include an office blood pressure (BP) ≥140 mm Hg systolic or 90 mm Hg diastolic on at least 3 visits and absence of secondary causes of hypertension, previous cardiovascular disease, including CHF, and life-threatening conditions. During each visit, 3 BP measurements were averaged for analysis. Overall (Figure 1), 3010 subjects consecutively entered the PIUMA registry.
from June 12, 1986, to June 30, 2000, and 174 of these subjects were lost to follow-up. Of the remaining 2836 subjects, 2724 had a complete echocardiographic examination at entry, and in 2384 of these subjects, the echocardiographic tracings were of good technical quality to estimate LV structure and function. Age, sex distribution, frequency of diabetes and cigarette smoking, and office and 24-hour ambulatory BP did not differ (all P=NS) between the 626 subjects with unavailable echocardiographic tracings and those admitted to the present study.

Electrocardiography

Standard 12-lead ECG was recorded at 25 mm/s and 1 mV/cm calibration. Subjects with complete right or left bundle branch block, previous myocardial infarction, Wolff-Parkinson–White syndrome, or atrial fibrillation were excluded from the analyses which tested the relation of ECG LV hypertrophy to ALVSD and outcome. LV hypertrophy was defined by using the Cornell/Strain index, a modification of the Perugia score, to be considered positive for LV hypertrophy in the presence of a modified Cornell voltage (sum of S wave in lead V1, and R wave in lead aVL) >2.4 mV in men or >2.0 mV in women or a typical strain pattern.

Echocardiography

Details about reading procedures and reproducibility of linear measures of LV mass in our laboratory have been reported previously. Linear measurements were made according to the American Society of Echocardiography. LV volumes used to estimate ejection fraction (EF) were determined by using the Teichholz method. The EF threshold used for defining ALVSD was arbitrarily set to 50%. LV mass was calculated according to Devereux as follows: $0.80 \times 1.04 \times ([\text{septal thickness} + \text{LV internal diameter} + \text{posterior wall thickness}]^{3} - \text{[LV internal diameter]}^{3}) + 0.6$ g and corrected by height in meters at the power of 2.7. LV hypertrophy was defined by an LV mass >51.0 g/m².

Ambulatory BP Monitoring

Ambulatory BP was recorded using an oscillometric device (SpaceLabs 5200, 90202, and 90207; SpaceLabs), and measurements were automatically taken every 15 minutes throughout the 24 hours. Reproducibility of ambulatory BP readings has been assessed in a subset of patients.

Follow-Up

Follow-up of patients was mostly in charge of family doctors, in cooperation with our hospital staff. Treatment was individualized and based on lifestyle and pharmacological measures. Results of experimental procedures including the echocardiographic study were open to family doctors and hospital staff. Diuretics, β-blockers, ACE inhibitors, calcium channel blockers and α-blockers, alone or combined, were the antihypertensive drugs most frequently used. Contacts with family doctors and phone interviews with patients were arranged to detect occurrence of major cardiovascular events.

End Points

For assessment of end points, hospital record forms and other source documents of patients who died or experienced a cardiovascular event were collected and reviewed in conference by the authors of this study. Details about the international standard criteria used to diagnose outcome events in the PIUMA study have been reported previously. CHF has been defined as a documented hospitalization, or attendance in an acute care setting, for treatment of CHF.

Data Analysis

Statistical analysis was performed using SPSS (SPSS) and SAS-Stat (SAS Institute). In addition to standard descriptive and comparative analyses, a multivariate logistic regression model was used to estimate the independent correlates of ALVSD. All the variables reported in Table 1 were tested in the model. For the subjects who experienced multiple events, survival analysis was restricted to the first event. Survival curves were estimated using Kaplan–Meier product-limit method and compared with the Mantel (log-rank) test. The effect of prognostic factors was evaluated by stepwise Cox model. The following covariates were tested: age (years), sex (men or women), systolic and diastolic BP (mm Hg), heart rate (bpm), family history of cardiovascular disease at age <55 in the father or <65 in the mother (no or yes), diabetes (no or yes), serum cholesterol (mmol/L), serum triglycerides (mmol/L), smoking habits (nonsmokers or current smokers), body mass index (kg/m²), antihypertensive treatment at the last follow-up visit before terminating event or censoring (lifestyle measures, diuretics, β-blockers, ACE inhibitors, calcium channel blockers, angiotensin II antagonists), LV mass (g/height[m]²), ALVSD (no or yes), and year of entry into the study (2-year intervals from 1986). To limit the impact of collinearity between the office and ambulatory values of BP and heart rate, these covariates were included into the model either as office or ambulatory values. The antihypertensive drug classes at follow-up entered the model coded as 1 for present and 0 for absent. Diabetes was defined by a fasting plasma glucose >7.0 mmol/L (126 mg/dL) or antidiabetic drugs. Two-sided P values <0.05 were considered statistically significant.

Results

The clinical characteristics of subjects with and without ALVSD are shown in Table 1. None of the subjects had evidence of alcoholic, postpartum, or viral or restrictive cardiomyopathy. Also, none of the subjects had segmental wall motion abnormalities. A total of 75% of the subjects had never been treated for hypertension, whereas previous treatment had been discontinued for $=4$ weeks before entry because of side effects, diagnostic tests, or unwillingness to continue in the subjects in the remaining 25%, Diabetes was found in 4.9% of participants, and 52% of these subjects were receiving antidiabetic drugs.

Features of Subjects With LVSD

Prevalence of ALVSD was 3.6%. EF was 40% to 49% in 87% of subjects, 30% to 39% in 9% of subjects, and <30% in 4% of subjects. Compared with the subjects without ALVSD, those with ALVSD were more frequently men and current smokers. Office and 24-hour ambulatory BP levels were increased in the subset with than in that without ALVSD. The 24-hour ambulatory heart rate was slightly but significantly increased in the subset with than in that without ALVSD.
higher in the subset with than without ALVSD. Age, body mass index, diabetes, and known duration of hypertension did not differ between the 2 groups. The greater LV mass in the subjects with than in those without ALVSD resulted from a greater wall thickness and internal diameter, without changes in the relative wall thickness between the 2 groups. Prevalence of LV hypertrophy in the total sample was 15.4% at ECG and 37.2% at echocardiography. All 56 subjects with septum or posterior wall thickness \(\geq 1.5 \) cm showed elevated levels of BP (average office BP 170/105 mm Hg; average 24-hour BP 153/97 mm Hg), thus ruling out the possibility of hypertrophic cardiomyopathy.

At the last follow-up visit before the terminating event or censoring, diuretics were taken more frequently by subjects with LVSD at entry than by those without (43% versus 32%; \(P < 0.03 \)), whereas distribution of ACE inhibitors (38% versus 42%), \(\beta \)-blockers (17% versus 22%), calcium channel blockers (23% versus 20%), and angiotensin II antagonists (8.2% versus 8.2%) did not differ between the 2 groups (all \(P = \text{NS} \)).

Correlates of ALVSD

In a logistic regression analysis, cigarette smoking (\(P = 0.013 \)), echocardiographic LV mass (\(P = 0.001 \)), and 24-hour heart rate (\(P = 0.014 \)) showed a direct and independent relationship with ALVSD. Office heart rate did not achieve significance. Figure 2, which reports the results of analysis, allows visualization of the expected probability of ALVSD for any given level of the significant covariates.

Incident Cardiovascular Events

The mean duration of follow-up was 6.0 years (range 0 to 17), and the 2384 subjects contributed 14,204 person years of follow-up. At the last follow-up contact, 35.2% of the subjects were receiving lifestyle measures alone, 11.1% diuretics or \(\beta \)-blockers alone or combined, 20.2% ACE inhibitors or calcium channel blockers alone or combined, and 33.5% other drug combinations. Overall, there were 227 first cardiovascular events, and the crude rate of events was 1.59 per 100 subjects per year. Of these first events, 24 were hospitalizations for symptomatic CHF, and their crude rate was 0.17 per 100 subjects per year (0.12 in the subjects without and 1.48 in those with ALVSD). Three of these subjects died shortly after hospitalization because of severe CHF. Figure 3 displays the cumulative hazard and the crude rate of overt CHF during follow-up in subjects with and without ALVSD at entry. As shown in Figure 4, the crude rate of total cardiovascular events was 3.16 and 1.55 per 100 subjects per year, respectively (log-rank test \(P = 0.003 \)), in the subjects with and without ALVSD at entry. However, such a difference was entirely explained by the difference between

Table 1. Clinical Characteristics of Subjects With and Without ALVSD at Entry

<table>
<thead>
<tr>
<th>Variable</th>
<th>Normal LV Systolic Function (n=2299)</th>
<th>LVSD (n=85)</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>50 (12)</td>
<td>49 (12)</td>
<td>0.68</td>
</tr>
<tr>
<td>Men, %</td>
<td>53.5</td>
<td>67.1</td>
<td>0.01</td>
</tr>
<tr>
<td>Body mass index, kg×m(^{-2})</td>
<td>26.7 (4)</td>
<td>26.9 (4)</td>
<td>0.59</td>
</tr>
<tr>
<td>Current smokers, %</td>
<td>23.9</td>
<td>40.0</td>
<td>0.001</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>5.0</td>
<td>3.5</td>
<td>0.54</td>
</tr>
<tr>
<td>Duration of hypertension, years</td>
<td>4.0 (6)</td>
<td>4.3 (6)</td>
<td>0.63</td>
</tr>
<tr>
<td>Office BP, mm Hg</td>
<td>156/97 (19/10)</td>
<td>160/101 (20/11)</td>
<td>0.04/0.001</td>
</tr>
<tr>
<td>Office HR, bpm</td>
<td>75 (11)</td>
<td>76 (13)</td>
<td>0.47</td>
</tr>
<tr>
<td>24-Hour BP, mm Hg</td>
<td>137/87 (15/10)</td>
<td>142/90 (19/11)</td>
<td>0.002/0.009</td>
</tr>
<tr>
<td>24-Hour HR, bpm</td>
<td>75 (9)</td>
<td>77 (11)</td>
<td>0.03</td>
</tr>
<tr>
<td>Glucose, mmol/L</td>
<td>5.50 (1.1)</td>
<td>5.52 (1.4)</td>
<td>0.86</td>
</tr>
<tr>
<td>Creatinine, mol/L</td>
<td>85.6 (20)</td>
<td>88.6 (25)</td>
<td>0.22</td>
</tr>
<tr>
<td>Total cholesterol, mmol/L</td>
<td>5.56 (1.2)</td>
<td>5.42 (1.2)</td>
<td>0.21</td>
</tr>
<tr>
<td>HDL cholesterol, mmol/L</td>
<td>1.28 (0.3)</td>
<td>1.23 (0.4)</td>
<td>0.22</td>
</tr>
<tr>
<td>LDL cholesterol, mmol/L</td>
<td>3.58 (0.9)</td>
<td>3.65 (1.1)</td>
<td>0.56</td>
</tr>
<tr>
<td>Triglycerides, mmol/L</td>
<td>1.64 (1.1)</td>
<td>1.57 (0.7)</td>
<td>0.58</td>
</tr>
<tr>
<td>Uric acid, mmol/L</td>
<td>280 (82)</td>
<td>283 (85)</td>
<td>0.80</td>
</tr>
<tr>
<td>Interventricular septum (cm)</td>
<td>1.11 (0.2)</td>
<td>1.19 (0.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>LV internal dimension (cm)</td>
<td>4.93 (0.5)</td>
<td>5.29 (0.6)</td>
<td>0.001</td>
</tr>
<tr>
<td>Posterior wall (cm)</td>
<td>1.00 (0.2)</td>
<td>1.07 (0.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>LV mass (g/height(^{-2}))</td>
<td>48.3 (13)</td>
<td>59.0 (20)</td>
<td>0.001</td>
</tr>
<tr>
<td>Relative wall thickness</td>
<td>0.41 (0.9)</td>
<td>0.41 (0.9)</td>
<td>0.91</td>
</tr>
<tr>
<td>EF (%)</td>
<td>67.8 (8)</td>
<td>44.7 (6)</td>
<td>0.001</td>
</tr>
<tr>
<td>Electrocardiographic LVH (%)</td>
<td>15.0</td>
<td>26.3</td>
<td>0.008</td>
</tr>
<tr>
<td>Echocardiographic LVH (%)</td>
<td>36.3</td>
<td>61.2</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

HR indicates heart rate; LVH, left ventricular hypertrophy.
the groups in the incidence of overt CHF. In fact, neither the cerebrovascular (58 cases of stroke and 26 cases of transient ischemic attacks) nor the coronary (44 cases of acute myocardial infarction, 42 cases of unstable angina, and 6 cases of sudden cardiac death) events showed any statistical differences between the 2 groups (Figure 3). The other 27 patients developed occlusive arterial disease (n=19) or severe renal failure requiring dialysis (n=8) as their first cardiovascular event.

Multivariate Analysis
Table 2 shows the list of variables that achieved significance in the multivariate analysis according to the Cox model. Age \((P=0.0001) \), LV mass \((P=0.001) \), and ALVSD \((P=0.0001) \) were the sole independent predictors of overt CHF, and none of the other variables (see data analysis) achieved statistical significance in modeling the multivariate hazard function. Table 2 shows the final multivariate model with 3 covariates. End-diastolic LV internal diameter was a significant predictor of CHF when it entered the equation alone \((P=0.0001) \) and after simultaneous adjustment for age and ALVSD \((P=0.014) \). However, its predictive value did not remain significant \((P=0.40) \) when LV mass entered the equation. LV hypertrophy at ECG showed an independent association with overt CHF after adjustment for age and ALVSD (hazard ratio, 3.03; 95% confidence intervals, 1.26 to 7.29; \(P=0.013) \), but its predictive value did not remain significant \((P=0.27) \) after correction for LV mass.

Discussion
The present study provides the first assessment of prevalence, determinants, and prognosis of ALVSD in a large population of subjects with essential hypertension. In these subjects,
nat2.7) 1.58 (1.20–2.07) 0.001

Age 1 SD (12 years) 2.87 (1.80–4.60) 0.0001

prevalence of ALVSD, defined by an echocardiographic EF <50%, was 3.6%, and the subjects with ALVSD showed a 9-fold higher risk of hospital admission for CHF over a mean follow-up period of 6 years compared with those with normal EF. The excess risk associated with ALVSD persisted after simultaneous adjustment for age and LV mass, although these results are supported by a relatively low number of outcome events.

Previous Studies
As discussed by Wang and et al., most of the available studies that examined prevalence and clinical correlates of ALVSD have been conducted in general population samples. In these studies, prevalence of ALVSD ranged between 0.9% and 12.9%, depending on the clinical characteristics of the population and the EF values used to define ALVSD. The only available report in patients with essential hypertension is a cross-sectional analysis of the Genetic Epidemiology Network (HyperGEN) study, performed on 2086 hypertensive subjects. In these subjects, EF was normal (95% Confidence Interval)

TABLE 2. Independent Predictors of CHF (Cox Model)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Comparison</th>
<th>Adjusted Hazard Ratio (95% Confidence Interval)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 1 SD (12 years)</td>
<td>2.87 (1.80–4.60)</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>LV mass 1 SD (13.8 g/height×m²³)</td>
<td>1.58 (1.20–2.07)</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>ALVSD Yes vs No</td>
<td>9.99 (3.67–27.2)</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Indeed, overt CHF may be expected as a frequent complication in the natural history of ALVSD. In a cohort of elderly participants to the Cardiovascular Health Study (mean age 72 years), 5.5% of subjects showed ALVSD, and the subsequent incidence of CHF events approximated 3% per year. The less stringent definition for overt CHF, which did not require hospitalization, and the older age of the population may contribute to explain the higher incidence of CHF in the Cardiovascular Health Study than in the present study.

Study Limitations
We could not evaluate the prognostic impact of severe systolic dysfunction because EF was <30% only in 4% of subjects with ALVSD. In a general population study, only 3% of subjects without previous cardiovascular disease had an EF ≤30%. In a report from the Framingham Heart Study, prevalence of subjects with EF <30% was 6%, but individuals with previous myocardial infarction and valvular disease were not excluded. Furthermore, because our population is exclusively composed of white subjects, extrapolation of results to different ethnic groups may be problematic. In addition, because only about one third of the subjects had periodical echocardiographic examinations during follow-up,
the prognostic impact of serial changes in LV anatomy and function could not be determined. Two further limitations of the present study are the lack of assessment of diastolic dysfunction, which may be combined with a normal or abnormal LV pump function, and the assessment of systolic function at midwall level, which may also be impaired in subjects with endocardial EF >50%. Finally, because diagnosis of CHF had to be corroborated by hospitalization or attendance for treatment in an acute care setting, we might have missed subjects with acute heart failure who died before attending the hospital and less severe subjects who were treated by their family doctors at home. The present standard definition of CHF is endorsed in large intervention trials in the field of cardiovascular prevention.

Perspectives

ALVSD, defined by an echocardiographic EF <50%, is clinically important in asymptomatic subjects with essential hypertension without overt CHF. In our study, its frequency was 3.6%, and these subjects showed a 9-fold higher risk of hospital admission for CHF when compared with the subjects with normal EF. Once diagnosed, ALVSD should prompt hospital admission for CHF when compared with the subjects with normal EF. Once diagnosed, ALVSD should prompt aggressive lifestyle and pharmacological strategies to delay or prevent evolution toward symptomatic CHF. Such strategies may be rewarding because treatment of hypertension decreases the risk of CHF by \(\approx 50\% \), and ACE inhibitors reduce the risk of overt CHF in patients with ALVSD. Appropriate strategies for ALVSD prevention in asymptomatic subjects with normal systolic function should be investigated in future trials.

Acknowledgments

This work was supported in part by grants from Associazione Umbra Cuore e Ipertensione, Perugia, Italy. We thank Francesca Saveri for secretarial assistance and Mariano Cecchetti for nursing assistance.

References

Asymptomatic Left Ventricular Systolic Dysfunction in Essential Hypertension: Prevalence, Determinants, and Prognostic Value
Paolo Verdecchia, Fabio Angeli, Roberto Gattobigio, Mariagrazia Sardone and Carlo Porcellati

Hypertension. 2005;45:412-418; originally published online January 17, 2005;
doi: 10.1161/01.HYP.0000154822.37141.f6
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/45/3/412

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/