Interaction of Angiotensin II Type 1 and D₅ Dopamine Receptors in Renal Proximal Tubule Cells

Chunyu Zeng, Zhiwei Yang, Zheng Wang, John Jones, Xiaoyan Wang, Joanna Altea, Amy J. Mangrum, Ulrich Hopfer, David R. Sibley, Gilbert M. Eisner, Robin A. Felder, Pedro A. Jose

Abstract—Angiotensin II type 1 (AT₁) receptor and D₅ and D₁ dopamine receptors directly interact in renal proximal tubule (RPT) cells from normotensive Wistar-Kyoto rats (WKY). There is indirect evidence for a D₅ and AT₁ receptor interaction in WKY and spontaneously hypertensive rats (SHR). Therefore, we sought direct evidence of an interaction between AT₁ and D₅ receptors in RPT cells. D₁ and AT₁ receptors colocalized in WKY cells. Angiotensin II decreased D₅ receptors in WKY cells in a time- and concentration-dependent manner (EC₅₀=2.7×10⁻⁸ M; t₁/₂=4.9 hours), effects that were blocked by an AT₁ receptor antagonist (losartan). In SHR, angiotensin II (10⁻⁸ M/24 hours) also decreased D₅ receptors (0.96±0.08 versus 0.72±0.08; n=12) and to the same degree as in WKY cells (1.44±0.07 versus 0.92±0.08). However, basal D₅ receptors were decreased in SHR RPT cells (SHR 0.96±0.08; WKY 1.44±0.07; n=12 per strain; P<0.05) and renal brush border membranes of SHR compared with WKY (SHR 0.54±0.16 versus WKY 1.46±0.10; n=5 per strain; P<0.05). Angiotensin II decreased AT₁ receptor expression in WKY (1.00±0.04 versus 0.72±0.08; n=8; P<0.05) but increased it in SHR (0.96±0.04 versus 1.32±0.08; n=8; P<0.05). AT₁ and D₅ receptors also interacted in vivo; renal D₅ receptor protein was higher in mice lacking the AT₁ receptor (AT₁⁻/-; 1.61±0.31; n=6) than in wild-type littermates used as controls (AT₁+/+; 0.81±0.08; n=6; P<0.05), and renal cortical AT₁ receptor protein was higher in D₅ receptor null mice than in wild-type littermates (1.18±0.08 versus 0.84±0.07; n=4; P<0.05). We conclude that D₁ and AT₁ receptors interact with each other. Altered interactions between AT₁ and dopamine receptors may play a role in the pathogenesis of hypertension. (Hypertension. 2005;45(part 2):804-810.)

Key Words: receptors, dopamine receptors, angiotensin II rats, spontaneously hypertensive normotension kidney

Several cardiovascular diseases, including hypertension, are associated with abnormal regulation of sodium balance. This balance is regulated by natriuretic and antinatriuretic hormones and humoral agents. Among the numerous factors involved in this process are angiotensin II and dopamine. During moderate volume expansion, renal dopamine production is increased, and dopamine, via D₅-like (comprised of D₁ and D₅ subtypes) and D₂-like receptors (comprised of D₂, D₃, and D₄ subtypes), acts to increase sodium excretion. In contrast, during salt deprivation, angiotensin II production is increased, and angiotensin II, via D₁-like and AT₁ receptors in RPT cells, increases renal sodium transport. Angiotensin II type 1 (AT₁) receptors, increases renal sodium transport. Angiotensin II antagonizes the natriuretic response elicited by dopamine, and dopamine opposes angiotensin II-mediated sodium transport in the renal proximal tubules (RPTs). Even a small increase in intracellular sodium concentration induces an increase in D₁ receptors and a decrease in AT₁ receptors in renal cell surface membranes. Although the counter-regulation between dopamine and angiotensin II receptors has been shown primarily in RPTs, these receptors may also interact in other areas in the kidney.

In addition to counter-regulation of sodium transport by D₁-like and AT₁ receptors in RPT cells, they also each interact to regulate expression of the other. Activation of D₁-like or D₅ receptors decreases AT₁ receptor expression in RPT cells from WKY. A physical interaction between the other D₁-like receptor (ie, D₅) and the AT₁ receptor has not been reported, although there is indirect evidence for a negative interaction between D₅ and AT₁ receptors in RPT cells. In that study, we found that a D₁-like receptor, presumably the D₅ receptor, was capable of decreases-
ing AT$_1$ receptor expression in RPT cells from WKY and spontaneously hypertensive rats (SHR). Therefore, we sought direct evidence of an interaction between the AT$_1$ receptor and the D$_5$ receptor in RPT cells and determined whether this interaction is different between WKY and SHR.

Methods

AT$_1$A Receptor–Deficient Mice

The characteristics and genotyping of mice lacking the AT$_1$A receptor (AT$_1$A$^{-/-}$) have been reported.2,20 The current studies used second-generation AT$_1$A$^{-/-}$ mice from first-generation heterozygous mice of mixed C57BL/6 and B129 background from the University of Virginia. Gender-matched, wild-type littermates were used as controls (AT$_1$A$^{+/+}$). After mice were anesthetized with CO$_2$, kidneys were harvested, snap-frozen in liquid nitrogen, stored at -70°C, and shipped to Georgetown University Medical Center.

Generation of Mice Lacking the D$_5$ Receptor

The generation of mice lacking the D$_5$ receptor (D$_5$$^{-/-}$) have been reported.22,23 These mice developed hypertension after 2 months of age.25 The current studies used D$_5$$^{-/-}$ mice generated in a C57BL/6 Taconic background. Gender-matched, nontransgenic littermates were used as controls (D$_5$$^{+/+}$).

Blood Pressure Studies

The rats (Taconic; Germantown, NY) were anesthetized with pentobarbital (50 mg/kg IP) and placed on a heated board to maintain body temperature at 37°C. Catheters were inserted into the femoral vessels and right jugular vein. After stable blood pressures were obtained for \approx30 minutes (verifying that the SHR were hypertensive and the WKY were normotensive), kidneys were removed and the rats euthanized (pentobarbital; 100 mg/kg IV). The renal cortices were homogenized in ice-cold lysis buffer (PBS with 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 1 mM EDTA, 1 mM EGTA, 1 mM PMSF, 10 µg/mL aprotinin, and 10 µg/mL leupeptin), sonicated, kept on ice for 1 hour, and centrifuged at 16 000g for 30 minutes. The supernatants were stored at -70°C until use for immunoblotting.$^{15-19,24-27}$ All experiments were approved by the Georgetown University animal use and care committee.

Cell Culture

Immortalized RPT cells obtained from 4- to 8-week-old WKY and SHR were cultured at 37°C in 95% air/5% CO$_2$ atmosphere in DMEM/F-12 culture media.$^{15,18,25-27}$ These RPT cells have characteristics similar to freshly obtained RPT brush border membranes and RPTs, at least with regard to D$_5$ receptors and responses to G-protein stimulation.$^{25-27}$ The cells (80% confluence) were extracted in ice-cold lysis buffer, sonicated, kept on ice for 1 hour, and centrifuged at 16 000g for 30 minutes. The supernatants were stored at -70°C until use for immunoblotting.

Immunoblotting

AT$_1$ receptor antibody (Abcam Limited) is a mouse monoclonal antibody; the specificity of this antibody to the AT$_1$ receptor has been reported.28 The amino acid sequence of the peptide for the rabbit anti-human D$_5$ receptor antibody corresponds to the third intracellular loop of the D$_5$ receptor. We reported the specificity of this D$_5$ receptor antibody.29 Rat RPT cells were treated with vehicle (dimethyl sulfoxide), angiotensin II (10$^{-8}$M), or Angiotensin II (10$^{-8}$M/24 hours), or treated with vehicle (dimethyl sulfoxide) and Angiotensin II (10$^{-8}$M/24 hours). The AT$_1$ receptor antagonist losartan (10$^{-8}$M) was added at the beginning of the treatment. The blots were scanned and the densities expressed as percent maximum inhibitory effect. AT$_1$ receptor levels were determined by stripping the membranes with 100 mM glycine-HCl (pH 2.5), and reblotting the membranes with AT$_1$ receptor antibody (1:400).$^{15,18,24-27,29}$ When appropriate, the densities of the receptor bands were corrected by the density of the α-actin band.

Confocal Microscopy of Double-Stained RPT Cells

RPT cells, grown on coverslips, were fixed and permeabilized with 100% methanol (30 minutes). The D$_5$ receptor was visualized using a rabbit anti-human D$_5$ receptor antibody followed by fluorescein isothiocyanate (FITC)–conjugated anti-rabbit secondary antibody (Molecular Probes) or a mouse anti-AT$_1$ receptor monoclonal antibody (Abcam Limited), followed by an Alexa Fluor 568–goat anti-mouse IgG antibody (Molecular Probes). Cells on coverslips were mounted with the ProLong Antifade Kit (Molecular Probes). Negative controls included absence of primary or secondary antibodies. Immunofluorescence densities and images were acquired (Olympus AX70) at an excitation wavelength of 488 and 568 nm; emission was detected at 535 and 645 nm.30

Statistical Analysis

Data are expressed as mean±SEM. Comparison within groups was made by ANOVA for repeated measures (or paired t test when only 2 groups were compared), and comparison among groups (or t test when only 2 groups were compared) was made by ANOVA with Holm–Sidak test. A value of $P<0.05$ was considered significant.

Results

AT$_1$ Receptors Decrease D$_5$ Receptor Expression in RPT Cells From SHR and WKY

Angiotensin II decreased D$_5$ receptors in a concentration- and time-dependent manner in RPT cells from WKY. The maximum inhibitory effect was 43%; it was significant at and $>$10$^{-8}$ M; the concentration for half-maximal inhibition was 2.7×10$^{-9}$ M (Figure 1A). The inhibitory effect of angiotensin II (10$^{-8}$ M) was noted as early as 8 hours and maintained for \approx30 hours (Figure 1B). The specificity of angiotensin II as an AT$_1$ receptor agonist was also determined by studying the effect of the AT$_1$ receptor antagonist losartan. Consistent with the study shown in Figure 1A and 1B, angiotensin II (10$^{-8}$ M/24 hours), decreased D$_5$ receptors in WKY cells (control 1.10±0.06; angiotensin II 0.76±0.06; $n=7$; $P<0.05$). The AT$_1$ receptor antagonist losartan (10$^{-8}$ M/24 hours), by itself, had no effect on D$_5$ receptor expression (1.04±0.06) but reversed the inhibitory effect of angiotensin II on D$_5$ receptor expression (1.10±0.06; Figure 1C).

We next compared the effect of angiotensin II on D$_5$ receptor expression studied concurrently in RPT cells from WKY and SHR. In RPT cells from WKY and SHR, angiotensin II (10$^{-8}$ M/24 hours) also decreased D$_5$ expression (WKY 1.44±0.07 versus 0.92±0.08; SHR 0.96±0.08 versus 0.72±0.08; $n=12$), and the degree of reduction in SHR (28±7%) was similar to that noted in WKY cells (35±6%; Figure 1D). Basal D$_5$ receptor levels were lower in SHR than in WKY RPT cells (0.96±0.08 versus 1.44±0.07; $n=12$; Figure 1D). D$_5$ receptor protein was also decreased in brush border membranes from the kidney of SHR compared with WKY (WKY 1.46±0.16 versus SHR 0.54±0.10; $n=5$; $P<0.01$; Figure 1E).

Angiotensin II Decreases AT$_1$ Receptor Expression in RPT Cells From WKY But Increases It in SHR

To confirm our previous report on the effect of angiotensin II on AT$_1$ receptor expression in RPT cells,16 we used a different monoclonal AT$_1$ antibody in this study. RPT cells were incubated with angiotensin II for the indicated times and...
concentrations. Angiotensin II decreased AT1 receptor expression in a concentration- and time-dependent manner in RPT cells from WKY (EC50 = 6.6 ± 10^-6 M; t1/2 = 4.2 hours; Figure 2A and 2B). Whereas angiotensin II decreased its own receptor expression in RPT cells from WKY, it increased it in RPT cells from SHR (WKY 1.00 ± 0.04 versus 0.72 ± 0.08; SHR 0.96 ± 0.04 versus 1.32 ± 0.08; n=8; P<0.05; Figure 2C), in agreement with our previous report.16

AT1 Receptor Colocalizes With the D5 Receptor in Rat RPT Cells
To determine the potential for a direct or indirect interaction between D5 and AT1 receptors, we studied the colocalization of D5 and AT1 receptors in RPT cells from WKY. D5 and AT1 receptors were found throughout the cell, with evidence of colocalization, especially at the cell surface membrane (Figure 3). To determine whether there is a physical interaction

Figure 1. Effect of angiotensin II on D5 receptor protein expression in RPT cells from WKY and SHR. A, Concentration response of D5 receptor expression in RPT cells from WKY treated with angiotensin II. Immunoreactive D5 receptor expression was determined after 24-hour incubation with the indicated concentrations of angiotensin II. Results are expressed as relative density units (DU; n=7; *P<0.05 vs control [C]; ANOVA; Holm–Sidak test). B, Time course of D5 receptor expression in RPT cells from WKY treated with angiotensin II. Cells were incubated for the indicated times with 10^-8 M angiotensin II. Results are expressed as relative DU (n=7; *P<0.05 vs control [0 time]; ANOVA; Holm–Sidak test). C, Effect of angiotensin II (Ang II) and an AT1 receptor antagonist (losartan) on D5 receptor expression in WKY RPT cells. Cells were incubated with the indicated reagents, respectively (Ang II 10^-8 M; losartan 10^-8 M), for 24 hours. Results are expressed as the ratio of D5 receptor to α-actin densities (n=7; *P<0.05 vs others; ANOVA; Holm–Sidak test). D, Effect of angiotensin (10^-8 M/24 hours) on D5 receptor expression in RPT cells from WKY and SHR. Results are expressed as the ratio of D5 receptor to α-actin densities (n=12; *P<0.05; control; *P<0.05 vs WKY; ANOVA; Holm–Sidak test). E, Immunoreactive D5 receptor in renal brush border membranes of WKY and SHR. Results are expressed as the ratio of D5 receptor to α-actin densities (*P<0.01 vs WKY; n=5; t test).

Figure 2. Effect of angiotensin II on AT1 receptor expression in RPT cells from WKY and SHR. A, Concentration response of AT1 receptor expression in rat RPT cells from WKY treated with angiotensin II. Immunoreactive AT1 receptor expression was determined after 24-hour incubation with the indicated concentrations of angiotensin II. Results are expressed as relative density units (DU; n=11; *P<0.05 vs control; ANOVA; Holm–Sidak test). B, Time course of AT1 receptor expression in RPT cells from WKY treated with angiotensin II. Cells were incubated for the indicated times with 10^-8 M angiotensin II. Results are expressed as relative DU (n=11; *P<0.05 vs control [0 time]; ANOVA; Holm–Sidak test). C, Effect of angiotensin (10^-8 M/24 hours) on AT1 receptor expression in RPT cells from WKY and SHR. Results are expressed as the ratio of AT1 receptor to α-actin densities (n=5; *P<0.05; control; ANOVA; Holm–Sidak test).
between the D5 and the AT1 receptor, additional experiments were performed. D5 receptors were first immunoprecipitated with anti-D5 receptor antibodies and the immunoprecipitate analyzed by immunoblotting with anti-AT1 receptor antibodies. Additionally, antibodies were reversed for immunoprecipitation and immunoblotting. No D5/AT1 receptor coimmunoprecipitation bands were found (data not shown).

D5 Receptor Expression Is Increased in the Kidneys of AT1A/−/− Mice

Although the coimmunoprecipitation study showed no evidence for a direct physical interaction between AT1 and D5 receptors, we determined whether the AT1 receptor could regulate D5 receptor expression in vivo. The D5 and AT1 receptors each can regulate expression of the other because D5 receptor protein expression was greater in kidneys of AT1A/−/− (1.61±0.31; n=6) than AT1A+/+ littermates (0.81±0.08; n=6; P<0.05; Figure 4).

AT1 Receptor Expression Is Increased in the Kidneys of D5R−/− Mice

We next determined whether the D5 receptor could regulate AT1 receptor expression in vivo. We found that F6 pentobarbital-anesthetized congenic D5R−/− mice (F6) had higher systolic blood pressure (SBP) and diastolic blood pressure (DBP; SBP 117±5 mm Hg; DBP 85±2 mm Hg; n=5) than wild-type C57BL/6 (Taconic) mice (SBP 94±2 mm Hg; DBP 69±3 mm Hg; n=5; P<0.05; t test), in agreement with previous reports.23,31 The arterial blood pressures of awake D5R−/− mice were in the hypertensive range.23,31 Immunoreactive AT1 receptors were also greater in the kidney of D5R−/− than D5R+/+ littermates (D5R−/− 1.18±0.08; D5R+/+ 0.84±0.07; n=4; P<0.05; Figure 5).

Discussion

Alterations in the responsiveness of the proximal tubule to angiotensin II and dopamine have important implications for net sodium reabsorption. Several studies have shown that the dopaminergic and renin-angiotensin systems interact to regulate renal function.9–11,15,16 For example, inhibition of renal angiotensin II production or blockade of AT1 receptors increases the natriuretic effect of the D1-like agonist fenoldopam.9,32 D1-like and D2-like receptor agonists also antagonize the stimulatory effect of angiotensin II, acting via AT1 receptors, on renal proximal tubular luminal sodium transport.10,33,34 The renal vasoconstrictor effect of angiotensin II can also be antagonized by D1-like receptor agonists,15 and angiotensin-converting enzyme inhibition augments the renal vasodilator effect of a D1-like receptor agonist.36 Our previous studies showed that dopamine, via D1-like and D3 receptors, inhibits AT1 receptor expression;15,17 indirect evidence suggests that the D3 receptor may be involved in the inhibitory effects of a D2-like receptor on AT1 receptor.15 This is consistent with our finding in human RPT cells indicating that the D2 but not the D1 receptor decreases AT1 receptor expression,37 and AT1 receptor expression in renal cortical membrane of D5R−/− mice is increased relative to wild-type littermates.

To better understand the interaction between dopamine and AT1 receptors, we investigated the effect of AT1 receptor activation on the expression of dopamine receptor subtypes in RPT cells. In a preliminary communication, we reported that
activation of the AT₁ receptor increases D₁ receptor expression in RPT cells from WKY but not from SHR.¹⁸

The ability of dopamine and D₁-like agonists to couple to signal transducers and decrease renal proximal tubular sodium reabsorption is impaired in genetic rodent hypertension and human essential hypertension.¹,⁵,⁷,⁸,²⁶,³⁸ Indeed, the aberrant D₁-like receptor function in the kidney precedes and cosegregates with high blood pressure in SHR.¹,⁵,⁷,⁸ In addition, disruption of the D₁ or D₅ receptor in mice produces hypertension.²³,³¹,³⁸ Although total cellular D₁ receptor expression is not different in RPT cells of WKY and SHR, D₁-like receptor-mediated natriuresis is impaired in SHR because of an uncoupling of D₁-like receptors from their G-protein/effecter enzyme complex.¹,⁵,⁷,⁸,²⁶ In this study, we find that D₁ receptor expression is decreased in RPT cells and renal brush border membranes from SHR compared with WKY cells. Because the increase in cAMP levels after D₁-like receptor stimulation is attributable mainly to the D₁ receptor relative to the D₅ receptor,⁴⁰ we speculate that the effect of AT₁ receptors on D₁ receptor expression may not have as significant an impact on renal tubular function relative to the effect of the AT₁ receptor on the D₁ receptor. However, the ability of the D₁ receptor to negatively regulate the AT₁ receptor may have a significant impact on the regulation of blood pressure. Indeed, in the current report, we show that renal D₁ receptor protein is increased in AT₁ receptor–deficient mice, and renal AT₁ receptor is increased in D₁ receptor–deficient mice, relative to their wild-type littermates.

The role of this differential expression of D₁ receptors on renal sodium handling remains to be determined. However, the hypertension in D₁−/− mice is aggravated by increased sodium intake.⁴¹ We may speculate that this may be, in part, attributable to increased renal expression of AT₁ receptors. We have preliminary studies showing that the intraperitoneal administration of the AT₁ receptor antagonist losartan (20 mg/kg per day for 8 days) normalized blood pressure in pentobarbital D₁−/− mice but minimally affected blood pressure in D₁+/+ littermates (L.D. Asico et al, unpublished data, 2004). The decreased expression of D₁ receptors in SHR and the increased expression of AT₁ receptors in D₁−/− mice may be a mechanism of the unmitigated AT₁ receptor function in hypertension.

The mechanism for the decrease in D₁ receptor caused by AT₁ receptors was not studied. We find colocalization of D₁ and AT₁ receptors in RPT cells. However, there is no physical interaction determined by coimmunoprecipitation study, which indicates that D₁ and AT₁ receptors interact with each other via an indirect pathway. We have reported in a preliminary communication that the D₁ receptor decreases AT₁ receptor expression by increasing its degradation in human RPT cells.³⁷ It is possible that the AT₁ receptor regulates D₁ receptor expression by similar mechanisms.

The effect of angiotensin II on AT₁ receptor expression in RPT cells has not been consistent. In rabbit RPT cells, a 16-hour incubation with angiotensin II dose-dependently increases AT₁ receptor expression, assessed by radioligand binding.⁴² AT₁ receptor mRNAs in rat and rabbit RPT cells are also increased by angiotensin II.⁴³,⁴⁴ However, the intravenous administration of angiotensin II that increases systemic blood pressure does not alter immunoreactive renal AT₁ receptor expression but decreases AT₁ receptor expression (radioligand autoradiography) in glomeruli and inner stripe of the outer medulla. Three days after the infusion of angiotensin II, there is a tendency for a decrease in AT₁ expression in the whole kidney and in RPTs, but the changes are modest and do not reach statistical significance.⁴⁴ We reported that angiotensin II decreases AT₁ receptor, determined by immunoblotting, in cells from WKY.¹⁶ Because the specificity of commercially available antibodies has been questioned, the current studies used a different AT₁ receptor antibody. Using a monoclonal AT₁ receptor antibody, we again find that angiotensin II decreases AT₁ expression in RPT cells from WKY but produces the opposite effect in SHR. This contrasting effect of angiotensin II on AT₁ receptor expression in WKY and SHR suggests that our findings cannot be explained by limitations of AT₁ receptor antibodies. Rather, the strain-specific effect of angiotensin II on AT₁ receptor may be important in the pathogenesis of hypertension in SHR. However, it is realized that the renal expression of AT₁ receptors in SHR has not been consistently shown to be elevated.⁴⁵–⁵² For example, ovariectomy or salt loading in SHR increases renal AT₁ receptors.⁴³,⁴⁴ However, renal outer medullary but not cortical AT₁ expression has been reported to be increased in SHR relative to WKY.⁴⁷,⁴⁸ An autoradiographic study showed increased angiotensin II binding in all areas of the kidney of SHR (relative to WKY) at 1 week of age.⁴⁹ Renal cortical and brush border membrane AT₁ receptor binding is also higher in 4-week-old SHR relative to WKY.⁵⁰ AT₁ receptor expression is higher in certain cerebral nuclei and arteries of adult SHR relative to WKY.⁵¹,⁵² We also find no difference in AT₁ receptor protein in RPT cells from WKY and SHR. In contrast, AT₁ receptor expression in brush border membranes is higher in SHR than in WKY.⁵³ It is possible that discrepancies in published studies may be related to differences in membrane preparation.

In summary, we have demonstrated that activation (constitutively or via their respective ligands) of D₁ and AT₁ receptors negatively regulates the expression of each other. Taken together with our previous studies on the negative interaction between D₁/D₅ receptors on the one hand and AT₁ receptors on the other, dopamine receptors and AT₁ receptors may counter-regulate each other. Such a counter-regulation may have important implications in the regulation of sodium excretion and blood pressure.

Perspectives

Dopamine, mainly via D₁-like receptor (D₁ and D₅), increases sodium excretion by inhibition of NHE3, Na⁺/K⁺ ATPase, Cl⁻/HCO₃⁻, and Na⁺/HCO₃⁻ exchanger activities. Conversely, angiotensin II, via AT₁ receptor, decreases sodium excretion by stimulation of renal tubular ion transport.¹–⁸ Whereas there is reciprocal dopamine and angiotensin modulation in WKY, this effect is altered in SHR. The faulty D₁ receptor cannot counter the effects of AT₁ receptors in SHR, and the negative modulating action of angiotensin II on AT₁ receptors in WKY is actually reversed in SHR. The net result is enhanced antinatriuresis. Although the D₅ receptor contin-
ues to be a negative regulator of AT$_1$, in SHR, the decreased expression of D$_5$ receptors compared with WKYs may limit its effectiveness. Transregulation at the protein level, by alterations in protein synthesis or degradation, is a mechanism by which these receptors regulate each other.

Acknowledgments

These studies were supported in part by National Institutes of Health (NIH) grants HL 23081, DK 39308, HL08686, DK52612, HL 62211, HL 41618, and HL 074940 and by the National Natural Science Foundation of China (30470726).

References

Interaction of Angiotensin II Type 1 and D5 Dopamine Receptors in Renal Proximal Tubule Cells

Chunyu Zeng, Zhiwei Yang, Zheng Wang, John Jones, Xiaoyan Wang, Joanna Altea, Amy J. Mangrum, Ulrich Hopfer, David R. Sibley, Gilbert M. Eisner, Robin A. Felder and Pedro A. Jose

Hypertension. 2005;45:804-810; originally published online February 7, 2005; doi: 10.1161/01.HYP.0000155212.33212.99

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/45/4/804

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/