Increased Stroke Volume and Aortic Stiffness Contribute to Isolated Systolic Hypertension in Young Adults

Carmel M. McEniery, Yasmin, Sharon Wallace, Kaisa Maki-Petaja, Barry McDonnell, James E. Sharman, Christopher Retallick, Stanley S. Franklin, Morris J. Brown, R. Catherine Lloyd, John R. Cockcroft, Ian B. Wilkinson; on behalf of the ENIGMA Study Investigators

Abstract—Isolated systolic hypertension is a common condition in individuals aged older than 60 years. However, isolated systolic hypertension has also been described in younger individuals, although the mechanisms are poorly understood. We hypothesized that in young adults, isolated systolic hypertension and essential hypertension have different hemodynamic mechanisms and the aim of this study was to test this hypothesis in a cohort of subjects from The ENIGMA Study. Peripheral and central blood pressure, aortic pulse wave velocity, cardiac output, stroke volume, and peripheral vascular resistance were determined in 1008 subjects, aged 17 to 27 years. Compared with normotensive subjects, those with isolated systolic hypertension had significantly higher peripheral, central, and mean blood pressure, aortic pulse wave velocity, cardiac output, and stroke volume (P<0.001 for all comparisons). However, there were no differences in pulse pressure amplification, heart rate, or peripheral vascular resistance between the two groups. Compared with subjects with essential hypertension, mean pressure, heart rate, and peripheral vascular resistance were all significantly lower in isolated systolic hypertensive subjects, but pulse pressure amplification, aortic pulse wave velocity, cardiac output, and stroke volume were higher (P<0.001 for all comparisons). We have demonstrated that in young adults, isolated systolic hypertension and essential hypertension arise from different hemodynamic mechanisms. Isolated systolic hypertension appears to result from an increased stroke volume and/or aortic stiffness, whereas the major hemodynamic abnormality underlying essential hypertension is an increased peripheral vascular resistance. Long-term follow-up of these individuals is now required to determine whether they are at increased risk compared with age-matched normotensive individuals. (Hypertension. 2005;46:221-226.)

Key Words: arterial stiffness ■ hemodynamics ■ isolated systolic hypertension ■ stroke volume ■ young adults

Hypertension is a common disorder, affecting ≈25% of the overall population and is a major risk factor for cardiovascular disease. Epidemiological data not only show an age-related change in the incidence of hypertension but also in its form. In those aged younger than 50, the predominant form of hypertension is essential hypertension (EH), involving elevation of systolic (SBP) and diastolic pressure (DBP), or DBP alone, which is characterized by increased peripheral vascular resistance (PVR). However, in older individuals, the most common form of hypertension is isolated systolic hypertension (ISH). This affects ≈50% of those aged older than 60 and, in contrast to EH, is thought to be caused mainly by large artery stiffening, resulting from disruption and fatigue–fracture of elastic fibers. Therefore, ISH is often considered to be an exaggeration of “normal” age-related stiffening seen in most populations. Indeed, we and others have shown that aortic pulse wave velocity (PWV), a measure of arterial stiffness, is increased in patients with ISH compared with age-matched controls.

Interestingly, data from a number of studies suggest that ISH is also prevalent in adolescents and young adults. Although the mechanisms underlying ISH in younger individuals are poorly understood, two recent reports suggest that exaggerated pulse pressure (PP) amplification may be responsible and, hence, the terms “pseudo” or “spurious” hypertension have been applied. However, in both studies, central PP appeared to be elevated in the ISH subjects compared with normotensive individuals, suggesting that ISH in young individuals may not be benign. Moreover, neither study assessed cardiac output (CO) nor aortic stiffness, the principal determinants of PP.

We hypothesized that in young adults, ISH and EH result from different hemodynamic mechanisms and, specifically, that ISH results primarily from increased CO and/or aortic stiffening, rather than increased PVR. The aim of the present study was to test this hypothesis in a large cohort of healthy young subjects from The ENIGMA Study.
Methods

The ENIGMA Study is a long-term follow-up study of young individuals, investigating the origins of hypertension with regard to clinical, physiological, and genetic characteristics. The initial screening cohort consisted of 1668 individuals, selected at random from two University populations in the UK (Cambridge and Wales; response rate ~70%). Detailed hemodynamic measurements were then recorded in 1028 randomly scheduled subjects. Subjects with diabetes mellitus, a serum cholesterol ≥6.5 mmol/L, renal disease, or cardiovascular disease were excluded, as were subjects receiving any medication, leaving 1008 individuals for the present analyses. Approval for all studies was obtained from the Local Research Ethics Committees, and written informed consent obtained from each participant.

Protocol

All subjects completed a detailed lifestyle and medical history questionnaire, and height and weight were assessed. After 15 minutes of seated rest, brachial BP and radial artery waveforms were recorded. After 20 minutes of supine rest, brachial BP and radial artery waveforms were re-assessed, and PWV and CO were determined, as described.

Hemodynamics

Brachial BP was recorded in the dominant arm using a validated oscillometric technique (HEM-705CP; Omron Corporation).11 Readings were taken in duplicate, or triplicate if readings differed by >5 mm Hg. Radial artery waveforms were recorded with a high fidelity micromanometer (SPC-301; Millar Instruments) from the wrist of the dominant arm, and pulse wave analysis (SphygmoCor; AtCor Medical) was used to generate a corresponding central (ascending aortic) waveform, as validated previously.12 From this, central BP, augmentation index (AIx), mean arterial pressure (MAP), and heart rate (HR) were calculated, as described previously.13 Carotid–femoral (aortic) and carotid–radial (brachial) PWV were recorded using the same device, as described previously.13 Carotid waveforms were rescaled to the MAP and DBP to allow carotid AIx and SBP to be calculated, without the use of any radial to aortic transfer function.14 Cardiac output was assessed using a noninvasive, inert gas rebreathing technique.15 Briefly, while resting, subjects continuously rebreathed a gas mixture (1% SF6, 5% N20, and 94% O2) over 20 seconds, with a breathing rate of 15/min. Expired gases were sampled continuously and analyzed by an infrared photoacoustic-gas analyzer (Innol; Innosc; Innovation AVS) for the determination of CO and stroke volume (SV). All measurements were made by trained investigators. The within-observer and between-observer measurement reproducibility values for the arterial stiffness measurements were in agreement with our previously published data.13 The coefficient of variation of repeated determinations of cardiac output was <10%.

Data Analysis

Data were analyzed using SPSS software (version 11.0). Subjects were grouped into 4 categories, according to seated peripheral BP: normotensive (SBP <130 mm Hg and DBP <85 mm Hg); high-normal (SBP 130 to 139 mm Hg and/or DBP 85 to 89 mm Hg); ISH (SBP ≥140 mm Hg and DBP <90 mm Hg); and EH (SBP ≥140 mm Hg and/or DBP ≥90 mm Hg). Data were analyzed using one-way analysis of co-variance (ANCOVA), with gender included as a covariate. Post hoc analyses were conducted using the Bonferroni method. Individuals with high-normal BP were excluded from these analyses to reduce the potential for confounding overlap between the groups. Stepwise linear regression was used to investigate independent determinants of hemodynamic variables. Independent variables were chosen based on simple correlation analyses or those known or likely to be associated with the parameters under study. All values represent means±SD, and P<0.05 was considered significant.

Table 1. Characteristics of the Entire Study Cohort (N=1668), Grouped According to Seated BP

<table>
<thead>
<tr>
<th>Category</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Age</td>
<td>No. Age</td>
</tr>
<tr>
<td>Normotensive</td>
<td>470 20±6</td>
<td>705 20±6</td>
</tr>
<tr>
<td>High-normal</td>
<td>206 20±6</td>
<td>79 18±8</td>
</tr>
<tr>
<td>Isolated systolic hypertension</td>
<td>109 19±7</td>
<td>21 20±6</td>
</tr>
<tr>
<td>Essential hypertension</td>
<td>35 20±6</td>
<td>43 23±6</td>
</tr>
<tr>
<td>Total</td>
<td>820 20±6</td>
<td>848 19±7</td>
</tr>
</tbody>
</table>

Normotensive indicates optimal and normal BP (JNC VI guidelines); ISH, essential hypertension, increased SBP and/or increased DBP, on the basis of the first screening examination.

Results

Table 1 shows the mean age and gender of all 1668 subjects, grouped according to seated BP at the first screening examination. The overall prevalence of hypertension, regardless of its form, was 12%, (ISH 8%, n=130; and EH 4%, n=78). Raised BP was confirmed using JNC IV guidelines16 in 68% of subjects with ISH and 77% of subjects with EH, either by 24-hour ambulatory BP monitoring, or ≥3 seated BP readings over several months.

Hemodynamics According to BP Category

Detailed hemodynamic measurements, made in 1008 subjects, are listed in Table 2, excluding subjects with high-normal BP (n=151). There were no differences in age, number of smokers, family history of hypertension, or exercise habits between the 3 groups. However, compared with normotensive subjects, ISH subjects were taller, heavier, and had a higher body mass index (BMI), and were more likely to be male. Compared with the EH group, ISH subjects were taller, but not heavier, and there was no difference in BMI. However, the EH group contained a significantly higher proportion of females. Secondary analyses, based on male subjects, confirmed the group differences in height and weight.

Hemodynamic variables are shown in Table 3. Compared with normotensive subjects, subjects with ISH had significantly higher peripheral and central SBP, DBP, PP, and MAP. There were no differences in PP amplification, HR, brachial PWV, or PVR between ISH and normotensive subjects. However, subjects with ISH did have a significantly higher aortic PWV, CO, and SV, and lower AIx.

Compared with subjects with EH, MAP, HR, AIx, brachial PWV, and PVR were all significantly lower in ISH individuals, but peripheral and central PP, PP amplification, aortic PWV, CO, and SV were higher. The differences in CO and SV between the groups persisted when corrected for body surface area. In addition, substituting carotid SBP and AIx as surrogate central indices (ie, without using a transfer function), did not meaningfully alter any of the results.

Factors Influencing Hemodynamic Indices

Stepwise multiple regression models were constructed using all 1008 subjects to determine the factors influencing PP, aortic PWV, and SV (Table 4). Although gender emerged as the most
Subjects were stratified into quartiles of SV and aortic PWV to investigate their influence on PP (Figure 1). There was a significant increase in peripheral PP from the lowest to the highest quartiles of both SV and PWV ($P<0.001$). For a given level of PWV, PP increased moving up quartiles of SV, and vice versa. A similar effect was also observed for central PP. To investigate further the hemodynamic patterns within the ISH group, they were divided into high or low SV and PWV, based on self-reported habits; family history of HT, the proportion of each group having an immediate family member (parent or sibling) diagnosed by a medical practitioner as hypertensive.

Data were analysed using univariate ANCOVA, with gender as a covariate. Post hoc comparisons were made using the Bonferroni method. *$P<0.01$ vs normotensive. †$P<0.01$, EH vs ISH.

Physiological Determinants of ISH

Subjects were stratified into quartiles of SV and aortic PWV to investigate their influence on PP (Figure 1). There was a significant increase in peripheral PP from the lowest to the highest quartiles of both SV and PWV ($P<0.001$). For a given level of PWV, PP increased moving up quartiles of SV, and vice versa. A similar effect was also observed for central PP. To investigate further the hemodynamic patterns within the ISH group, they were divided into high or low SV and PWV, based on the mean values of the normotensive group (Figure 2). Stroke volume was elevated above the normotensive mean in 69% of subjects with ISH, and PWV was higher than the normotensive mean in 61%. The demographic and hemodynamic characteristics of the ISH subgroups are compared in Table 5, which indicate that 28% had a primary elevation of SV, 20% had a primary elevation of PWV, and 41% had an elevation of both PWV and SV.

Table 2. Demographics and Blood Pressure Indices in Normotensive, ISH, and EH Subjects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normotensive (n=722)</th>
<th>ISH (n=93)</th>
<th>EH (n=42)</th>
<th>ANCOVA P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>20±3</td>
<td>20±3</td>
<td>20±3</td>
<td>0.8</td>
</tr>
<tr>
<td>Age range</td>
<td>17–27</td>
<td>17–25</td>
<td>17–26</td>
<td></td>
</tr>
<tr>
<td>Gender, male/female</td>
<td>330/392</td>
<td>85/8</td>
<td>23/19</td>
<td></td>
</tr>
<tr>
<td>Height, m</td>
<td>1.71±0.09</td>
<td>1.79±0.07*</td>
<td>1.70±0.09†</td>
<td><0.001</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>68±13</td>
<td>82±14*</td>
<td>75±17*</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>23.1±3.6</td>
<td>25.7±4.1*</td>
<td>25.8±4.6*</td>
<td><0.001</td>
</tr>
<tr>
<td>Smoker, %</td>
<td>28</td>
<td>15</td>
<td>25</td>
<td>0.1</td>
</tr>
<tr>
<td>Family history of HT, %</td>
<td>22</td>
<td>28</td>
<td>36</td>
<td>0.1</td>
</tr>
<tr>
<td>Exercise, %</td>
<td>83</td>
<td>84</td>
<td>75</td>
<td>0.4</td>
</tr>
<tr>
<td>Peripheral SBP, mm Hg</td>
<td>115±9</td>
<td>146±5*</td>
<td>141±9*†</td>
<td><0.001</td>
</tr>
<tr>
<td>Peripheral DBP, mm Hg</td>
<td>71±7</td>
<td>78±7*</td>
<td>95±6†</td>
<td><0.001</td>
</tr>
<tr>
<td>Peripheral PP, mm Hg</td>
<td>44±9</td>
<td>66±7*</td>
<td>46±9†</td>
<td><0.001</td>
</tr>
<tr>
<td>MAP, mm Hg</td>
<td>85±7</td>
<td>99±6*</td>
<td>111±7†</td>
<td><0.001</td>
</tr>
<tr>
<td>Central SBP, mm Hg</td>
<td>98±8</td>
<td>120±6*</td>
<td>125±8*†</td>
<td><0.001</td>
</tr>
<tr>
<td>Central DBP, mm Hg</td>
<td>71±7</td>
<td>78±7*</td>
<td>95±6†</td>
<td><0.001</td>
</tr>
<tr>
<td>Central PP, mm Hg</td>
<td>27±5</td>
<td>42±5*</td>
<td>30±6†</td>
<td><0.001</td>
</tr>
<tr>
<td>HR, bpm</td>
<td>68±11</td>
<td>69±12</td>
<td>75±10†</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Data are means±SD (n=857). Subjects with high-normal BP excluded (n=151). Smoker, % indicates the proportion of each group who smoke ≥1 cigarette per day; exercise, %, the proportion of each group who undertake exercise ≥3 times per week, based on self-reported habits; family history of HT, the proportion of each group having an immediate family member (parent or sibling) diagnosed by a medical practitioner as hypertensive.

Data were analysed using univariate ANCOVA, with gender as a covariate. Post hoc comparisons were made using the Bonferroni method. *$P<0.01$ vs normotensive. †$P<0.01$, EH vs ISH.

Table 3. Hemodynamic Variables in Normotensive, ISH, and EH Subjects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normotensive (n=722)</th>
<th>ISH (n=93)</th>
<th>EH (n=42)</th>
<th>ANCOVA P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP Amplification§§</td>
<td>1.69±0.14</td>
<td>1.72±0.11</td>
<td>1.63±0.2*†</td>
<td><0.001</td>
</tr>
<tr>
<td>AIx, %§</td>
<td>0±12</td>
<td>-4±12*</td>
<td>5±13*†</td>
<td><0.001</td>
</tr>
<tr>
<td>Brachial PWV, m/s§</td>
<td>7.18±1.07</td>
<td>7.09±1.06</td>
<td>7.96±1.04*†</td>
<td><0.001</td>
</tr>
<tr>
<td>Aortic PWV, m/s§</td>
<td>5.83±0.32</td>
<td>6.26±0.39*</td>
<td>6.00±0.45†</td>
<td><0.001</td>
</tr>
<tr>
<td>CO, L/min§</td>
<td>6.9±1.9</td>
<td>8.1±1.9*</td>
<td>6.8±1.7†</td>
<td><0.001</td>
</tr>
<tr>
<td>SV (ml) §</td>
<td>83±21</td>
<td>93±24*</td>
<td>78±18†</td>
<td><0.001</td>
</tr>
<tr>
<td>PVR, dynes/s§</td>
<td>12.6±4.6</td>
<td>12.5±3.4</td>
<td>15.9±4.3*†</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Data are means±SD (n=857). Subjects with high-normal BP excluded (n=151). § indicates data corrected for MAP and gender.

Data were analysed using univariate ANCOVA, with gender as a covariate. Post hoc comparisons were made using the Bonferroni method. *$P<0.01$ vs normotensive. †$P<0.01$, EH vs ISH.
Discussion

The aim of the current study was to investigate the mechanisms of hypertension and, particularly, ISH in young adults by studying a large cohort of subjects from The ENIGMA Study. We have confirmed that ISH is the most common form of hypertension in young adults, outnumbering EH by a ratio of 2:1. The major new findings are that ISH and EH have different underlying hemodynamic mechanisms. Our data demonstrate that ISH in young adults is a heterogeneous condition, involving elevations of SV or aortic stiffness and, in some individuals, disturbances of both, but PP amplification is normal. In contrast, the predominant hemodynamic abnormality in EH was an elevated PVR, and a decreased SV, but normal isobaric aortic stiffness and reduced PP amplification.

Previous epidemiological studies in young adults and in adolescents show a similar preponderance of ISH over EH as observed in the current study. However, the hemodynamic mechanisms underlying ISH in young individuals have not been studied extensively. Two recent reports hypothesized that ISH may result from exaggerated amplification of a "normal" central PP. However, in the current study, there was no difference in PP amplification between subjects with ISH and normotensives. Central SBP was 22 mm Hg higher in ISH versus normotensives, suggesting that ISH in young individuals is not a problem of amplification and might not be benign, in contrast to previous suggestions. Conversely, SV and/or aortic PWV were increased in the majority of subjects with ISH (89%), compared with normotensive individuals. Interestingly, a recent study in young individuals demonstrated that a high PP was positively associated with an elevated SV, although this was a small study and data on aortic stiffness were not provided.

In contrast to ISH, the individuals with EH mirrored the "classical" picture described in earlier studies with a significantly increased PVR and reduced SV. Previous investigators also described the phenomenon of a hyperdynamic circulation in young individuals, preceding the development of "classical" EH, characterized by normal PVR but increased SV and/or HR. Clearly, some of the ISH subjects identified in the current study fit this description, with elevated SV (group A), or elevated SV and PWV (group B) and may well progress to develop EH, with an increased PVR and reduced SV. However,

Table 4. Stepwise Regression Analyses

<table>
<thead>
<tr>
<th>Model</th>
<th>Regression Coefficient</th>
<th>SE</th>
<th>β</th>
<th>P</th>
<th>R² Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral Pulse Pressure R²=0.46, P<0.001</td>
<td>Gender</td>
<td>-0.89</td>
<td>0.91</td>
<td>-0.44</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Stroke volume</td>
<td>0.14</td>
<td>0.02</td>
<td>0.28</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>AIX</td>
<td>-0.13</td>
<td>0.04</td>
<td>-0.14</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Aortic PWV</td>
<td>3.24</td>
<td>1.01</td>
<td>0.13</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>-0.35</td>
<td>0.16</td>
<td>-0.08</td>
<td>0.034</td>
</tr>
<tr>
<td>Central Pulse Pressure R²=0.42, P<0.001</td>
<td>Gender</td>
<td>-5.51</td>
<td>0.59</td>
<td>-0.43</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Stroke volume</td>
<td>0.09</td>
<td>0.01</td>
<td>0.030</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Aortic PWV</td>
<td>2.07</td>
<td>0.65</td>
<td>0.13</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>AIX</td>
<td>0.07</td>
<td>0.02</td>
<td>0.12</td>
<td>0.003</td>
</tr>
<tr>
<td>Aortic PWV R²=0.23, P<0.001</td>
<td>MAP</td>
<td>0.03</td>
<td>0.01</td>
<td>0.37</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>0.04</td>
<td>0.001</td>
<td>0.18</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Aortic PWV</td>
<td>2.07</td>
<td>0.65</td>
<td>0.13</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>AIX</td>
<td>0.07</td>
<td>0.02</td>
<td>0.12</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Stepwise linear regression analyses using all 1008 subjects. The regression coefficient provides the slope of the regression line, and β provides a measure of the relative strength of the association independent of the measurement units. Dependent variables are shown in bold.

Figure 1. Influence of SV and aortic PWV on peripheral PP.

Figure 2. Scatterplot of SV versus aortic PWV in normotensive (-X-) and ISH (-%-) subjects. The crossbars represent the normotensive means for SV (horizontal) and PWV (vertical). A indicates upper SV, lower PWV; B, upper SV, upper PWV; C, lower SV, upper PWV; and D, lower SV, lower PWV. Percentages within the graph represent the proportion of subjects within each quadrant, as shown in Table 5.
Such a mechanism may explain, at least in part, the significant elevation in the ISH subjects, even when corrected for body surface area. The same authors also suggest that sympathetic activation might prevent a compensatory decrease in PVR. However, HR was not elevated in the ISH subjects, compared with some individuals with elevated SV, an increase in sympathetic activation may reflect the fact that baseline BP readings were taken on a single visit only, albeit in duplicate and after 15 minutes of seated rest. However, our data are comparable with those from the Health Survey for England, which, based on single BP readings, gave a prevalence of hypertension of 10% in those <30 years. Nevertheless, we were able to confirm the diagnosis of hypertension in the majority of individuals, with regression to the mean and, to a lesser extent, white coat hypertension accounting for the remainder. An additional limitation is that our investigation of University students may bias our observations toward a healthy population. However, previous studies conducted in University populations suggest that the prevalence of hypertension is similar to those reported in NHANES I. Finally, although the cross-sectional nature of the current study allows us to characterize hemodynamic mechanisms underlying the different forms of hypertension in young individuals, this approach does not allow us to investigate the causal mechanisms, or to distinguish parallel from sequential pathways in the development of ISH. However, The ENIGMA Study is a long-term follow-up study, which should enable us to determine the causal mechanisms of hypertension in the future.

Perspectives

Hypertension is a major modifiable risk factor for cardiovascular disease. However, it is not a uniform condition and has distinct forms. Once established, hypertension is essentially incurable and thus patients are subjected to a lifetime of antihypertensive medication, with the potential for side effects and drug interactions. However, a better understanding of the hemodynamic changes contributing to the different forms of hypertension in young individuals, and their underlying mechanisms, may well allow us to intervene at an earlier stage and prevent the development of irreversible complications.

Limitations

Although the overall prevalence of hypertension in the current study was 12%, data from NHANES III suggests a prevalence of 5% in a similar age group. This discrepancy may reflect the fact that baseline BP readings were taken on a single visit only, albeit in duplicate and after 15 minutes of seated rest. However, our data are comparable with those from the Health Survey for England, which, based on single BP readings, gave a prevalence of hypertension of 10% in those <30 years. Nevertheless, we were able to confirm the diagnosis of hypertension in the majority of individuals, with regression to the mean and, to a lesser extent, white coat hypertension accounting for the remainder. An additional limitation is that our investigation of University students may bias our observations toward a healthy population. However, previous studies conducted in University populations suggest that the prevalence of hypertension is similar to those reported in NHANES I. Finally, although the cross-sectional nature of the current study allows us to characterize hemodynamic mechanisms underlying the different forms of hypertension in young individuals, this approach does not allow us to investigate the causal mechanisms, or to distinguish parallel from sequential pathways in the development of ISH. However, The ENIGMA Study is a long-term follow-up study, which should enable us to determine the causal mechanisms of hypertension in the future.

TABLE 5. Comparison of Subject Characteristics and Hemodynamics in ISH Subjects, Grouped According to Level of SV and Aortic PWV

<table>
<thead>
<tr>
<th>Quadrant of Stroke</th>
<th>A Upper SV/ Lower PWV 28%</th>
<th>B Upper SV/ Lower PWV 41%</th>
<th>C Lower SV/ Lower PWV 20%</th>
<th>D Lower SV/ Lower PWV 11%</th>
<th>ANOVA P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, % male</td>
<td>96</td>
<td>91</td>
<td>88</td>
<td>89</td>
<td>0.8</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>25±3</td>
<td>26±4</td>
<td>27±5</td>
<td>24±3</td>
<td>0.3</td>
</tr>
<tr>
<td>Peripheral SBP, mm Hg</td>
<td>147±4</td>
<td>146±4</td>
<td>148±7</td>
<td>145±4</td>
<td>0.6</td>
</tr>
<tr>
<td>Peripheral DBP, mm Hg</td>
<td>74±8</td>
<td>80±6</td>
<td>84±4</td>
<td>79±7</td>
<td>0.008</td>
</tr>
<tr>
<td>MAP, mm Hg</td>
<td>97±7</td>
<td>100±6</td>
<td>104±5</td>
<td>99±7</td>
<td>0.01</td>
</tr>
<tr>
<td>Central SBP, mm Hg</td>
<td>118±6</td>
<td>120±6</td>
<td>123±7</td>
<td>118±4</td>
<td>0.06</td>
</tr>
<tr>
<td>Central DBP, mm Hg</td>
<td>74±8</td>
<td>80±6</td>
<td>84±4</td>
<td>79±7</td>
<td>0.007</td>
</tr>
<tr>
<td>PP amplification</td>
<td>1.75±0.07</td>
<td>1.72±0.12</td>
<td>1.73±0.12</td>
<td>1.79±0.10</td>
<td>0.4</td>
</tr>
<tr>
<td>HR, beat/min</td>
<td>66±2</td>
<td>65±10</td>
<td>70±14</td>
<td>69±10</td>
<td>0.012</td>
</tr>
<tr>
<td>Aortic PWV, m/s*</td>
<td>5.05±0.48</td>
<td>6.33±0.79</td>
<td>6.43±0.94</td>
<td>5.22±0.6</td>
<td><0.001</td>
</tr>
<tr>
<td>CO, L/min</td>
<td>8.87±1.24</td>
<td>9.53±1.62</td>
<td>6.46±1.57</td>
<td>5.1±0.2</td>
<td><0.001</td>
</tr>
<tr>
<td>SV, mL</td>
<td>101±11</td>
<td>106±15</td>
<td>69±9</td>
<td>71±5</td>
<td><0.001</td>
</tr>
<tr>
<td>PVR, dynes/s</td>
<td>10.7±1.7</td>
<td>10.1±1.9</td>
<td>16.3±5.0</td>
<td>12.9±3.1</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Data are means±SD. *Data corrected for MAP. Data were analysed using ANOVA. There were no differences between groups in the No. of smokers or those undertaking regular exercise (>3×per week, based on self-reported exercise habits).

PVR indicates peripheral vascular resistance.
earlier stage, with pharmacological or even nonpharmaco-
logical treatments. Treatments such as weight loss or strate-
gies to reduce CO or sympathetic nervous system activity
might prevent hypertension from becoming established, al-
though clearly this hypothesis needs to be tested. However,
only after long-term follow up of such individuals, will we be
able to determine who ultimately develops EH or ISH later in
life, or if any of these individuals regres to a normal BP.

Conclusion
We have demonstrated that in young adults, ISH and EH arise
from different hemodynamic mechanisms. Isolated systolic hy-
pertension appears to result from an increased SV and/or aortic
stiffness, whereas the major hemodynamic abnormality under-
lying EH is an increased PVR. The mechanisms driving these
hemodynamic changes are poorly understood and, clearly, fur-
ther work is required to understand why some young individuals
are more susceptible to the development of hypertension, regard-
less of its form.

Appendix
The Enigma Study Investigators are: Derin Balogun, Samantha
Benedict, Ross Campbell, Edward Davidson, Zahid Dhakam,
Rhiannon Edwards, Ian Hall, Patrick Harnett, Stan Howarth, Dai
Lloyd, Isla Mackenzie, Maggie Murnery, Pawan Pusalkar, Michael
Sansbury, Matthias Schmitt, Justin Taylor, Edna Thomas, Neil
Thomas, Rachel Westcott, Olwyn Westwood, Simon Williams.

Acknowledgments
We thank the British Heart Foundation (project grant 03/050/15366).

References
Results from the Third National Health and Nutrition Examination
2. Colhoun HM, Dong W, Poulter NR. Blood pressure screening, man-
age and control in England: results from the health survey for
3. Franklin SS, Jacobs MJ, Wong, N.D. L'Italien, G.J., Lapuerta, P. Predom-
inance of Isolated Systolic Hypertension Among Middle-Aged and Elderly
4. Nielsen WB, Vestbo J, Jensen GB. Isolated systolic hypertension as a
major risk factor for stroke and myocardial infarction and an unexploited
source of cardiovascular prevention: a prospective population-based
5. Yasmin, McEniery CM, Wallace S, Dakham Z, Pusalkar M, Mac-Petajka
K, Ashby MJ, Cockroft JR, Wilkinson IB. Matrix metalloproteinase-9
(MMP-9), MMP-2, and serum elastase activity are associated with sys-
6. Nichols WW, Nicollini FA, Pepine CJ. Determinants of isolated systolic
7. Sorof JM, Poffenberger T, Franco K, Bernard L, Portman RJ. Isolated
systolic hypertension, obesity, and hyperkinetic hemodynamic states in
Isolated systolic hypertension: data on a cohort of young subjects from a
9. O’Rourke MF, Vlachopoulos C, Graham RM. Spurious systolic hyper-
10. Mahmoud A, Feely J. Spurious systolic hypertension of youth: fit young
self-measurement of blood pressure according to the revised British
Hypertension Society Protocol: the Omron HEM-705CP, Philips
12. Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method
for estimating ascending aortic pressure from the radial artery pressure
13. Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockcroft JR,
Webb DJ. The reproducibility of pulse wave velocity and augmentation
Mau-Song C, Yin FCP. Validation of carotid artery tonometry as a means of
estimating augmentation index of ascending aortic pressure. Hyper-
15. Clemensen P, Christensen P, Norsk P, Gronlund J. A modified photo-
and magnetoelectric multigas analyzer applied in gas exchange mea-
16. Joint National Committee.The Sixth Report of the Joint National Com-
mittee on Prevention, Detection, Evaluation, and Treatment of High
17. Pickering TG. Isolated systolic hypertension in the young. J Clin
18. Afifi J, Majul C, Paez O, Galarza C, Waisman G. Hemodynamic signifi-
1980;59(Suppl 6):343s–354s.
20. Finkelstein S, Wercel M, Agrest A. Hemodynamic patterns in essential
21. Bello CT, Sevy RW, Hamilton C, Hillyer PN. Relationship between
clinical severity of disease and hemodynamic patterns in essential hyper-
22. Fouad F, Tarazi R, Dunstah H, Bravo E. Haemodynamics of essential
Borderline hypertension: relationship between age, hemodynamics and
the hyperkinetic form of borderline hypertension. Circulation. 1971;44:
413–418.
25. Julius S, Krause L, Schork NJ, Mejia AD, Jones KA, van de Ven C,
797–804.
WB, Levy D. Hemodynamic patterns of age-related changes in blood
27. Sorof JM. Prevalence and consequence of systolic hypertension in
28. Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta
and large conduit arteries during early development as an initiating event
29. Snieder H, Hayward CS, Perks U, Kelly RP, Kelly PJ, Spector TD.
Heritability of central systolic pressure augmentation: a twin study.
P, Dzau VJ, Pratt RE. Physiological genomics of human arteries: quan-
titative relationship between gene expression and arterial stiffness.
JR. Nitric oxide regulates local arterial distensibility in vivo. Circulation.
32. McEniery CM, Qasem A, Schmitt M, Avolio AP, Cockcroft JR,
Wilkinson IB. Endothelin-1 regulates arterial pulse wave velocity in vivo.
33. Pravastata P, Brookes M, Poulter NR. Improved hypertension man-
34. McCarron P, Okasha M, McEwen J, Smith GD. Changes in blood
pressure among students attending Glasgow University between 1948 and
35. Thomas CB. Developmental patterns in hypertensive cardiovascular
Increased Stroke Volume and Aortic Stiffness Contribute to Isolated Systolic Hypertension in Young Adults

Carmel M. McEniery, Yasmin, Sharon Wallace, Kaisa Maki-Petaja, Barry McDonnell, James E. Sharman, Christopher Retallick, Stanley S. Franklin, Morris J. Brown, R. Catherine Lloyd, John R. Cockcroft and Ian B. Wilkinson

on behalf of the ENIGMA Study Investigators

Hypertension. 2005;46:221-226; originally published online May 2, 2005;
doi: 10.1161/01.HYP.0000165310.84801.e0

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/46/1/221

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/