Noninvasive Assessment of Local Pulse Pressure

Importance of Brachial-to-Radial Pressure Amplification

Francis Verbeke, Patrick Segers, Steven Heireman, Raymond Vanholder, Pascal Verdonck, Luc M. Van Bortel

Abstract—The advocated SphygmoCor procedure uses a radial-to-aorta transfer function with calibration on brachial instead of radial artery pressure to assess the central pulse pressure. We compared these values with carotid artery pulse pressures obtained from a validated calibration method, assuming mean minus diastolic blood pressure constant throughout the large artery tree. From 44 healthy subjects (21 males; 22 to 68 years) pressure waves were obtained at the radial, brachial, and carotid artery with applanation tonometry. Using the calibration method, radial and carotid artery pressures were assessed from brachial artery waves and pressures. The effect of brachial-to-radial pulse pressure amplification, brachial pulse pressure, mean pressure, age, gender, height, body mass index, and smoking on differences between the 2 methods was assessed. Brachial artery pressure was $118 \pm 12/72 \pm 10$ mm Hg. SphygmoCor central pulse pressure was 9.7 ± 4.6 mm Hg lower ($P<0.001$) than the carotid artery pulse pressure (33.0 ± 6.8 versus 42.7 ± 8.9 mm Hg). The difference between the 2 methods strongly depended ($P<0.001$) on brachial-to-radial artery pulse pressure amplification (5.8 ± 5.1 mm Hg; $12 \pm 11\%$) and less on brachial artery pulse pressure ($P=0.005$). After calibration of the radial pressure wave with radial instead of brachial artery pressures, the difference between SphygmoCor central pulse pressure and carotid pulse pressure decreased to 4 mm Hg. The advocated SphygmoCor procedure systematically underestimates the central pulse pressure with brachial-to-radial pulse pressure amplification as important determinant. Therefore, calibration of radial artery pressure waves on brachial artery pressures should be avoided. The underestimated of central aortic pulse pressure caused by the radial-to-aorta transfer function itself is much less than previously reported. *(Hypertension. 2005;46:244-248.)*

Key Words: pulse ■ blood pressure ■ blood pressure determination ■ arterial pressure

Branchial artery (BA) pulse pressure (PP) is a strong and independent predictor of cardiovascular morbidity and mortality in the general population,1 patients with hypertension,2 coronary heart disease,3 and end-stage renal disease.4 Although this peripheral PP is of great clinical value, from a pathophysiological point of view it seems more logical to presume that the left ventricle is merely affected by the central aortic pressure opposing the left ventricular ejection.5,6 Because PP is not constant throughout the large artery tree, BA PP may not be a good surrogate for central aortic PP.7,8

Methods have been developed to measure central blood pressure. One method has been proposed by Kelly and Fitchett.9 It makes use of calibration on pressure waveforms obtained at superficial arteries with applanation tonometry. This method assumes that mean arterial pressure (MAP) minus diastolic blood pressure is constant throughout the large artery tree9 and has been found accurate.10 Alternatively, radial-to-aorta pressure transfer can be used to mathematically transform radial artery (RA) waveforms into central aorta waveforms. A population-based radial-to-aorta transfer function is used in the SphygmoCor device (AtCor Medical Pty Ltd, Sydney, Australia). The advantage of this technique is the ease to perform applanation tonometry at the RA. Although this transfer function has been validated,11 the accuracy of central aortic PP obtained with the SphygmoCor has been largely debated.12–19 The debate focused mainly on the validity of the transfer function but ignored a second possible source of error in the advocated SphygmoCor procedure: calibration of the RA wave with brachial instead of radial blood pressure values.

We hypothesize that both the generalized transfer function and the use of BA blood pressure values as surrogate of RA blood pressure contribute to the presumed erroneous assessment of central PP by SphygmoCor. The present study investigates this hypothesis as well as the relative contribution of the 2 procedures. The validated calibration method proposed by Kelly and Fitchett is used as reference method.

Received February 11, 2005; first decision February 28, 2005; revision accepted April 6, 2005.

From the Department of Internal Medicine, Nephrology Section (F.V., R.V.), Ghent University Hospital; and the Hydraulics Laboratory (P.S., P.V.), Department of Civil Engineering, and the Heymans Institute of Pharmacology (S.H., L.M.V.B.), Ghent University, Ghent, Belgium.

Correspondence to Francis Verbeke, University Hospital Ghent, Department of Internal Medicine, Nephrology Section, De Pintelaan 185, B-9000 Ghent, Belgium. E-mail francis.verbeke@UGent.be

© 2005 American Heart Association, Inc.

Hypertension is available at http://www.hypertensionaha.org

DOI: 10.1161/01.HYP.0000166723.07809.7e
Figure 1. Study design. Randomized crossover design for procedures, preceded and followed by brachial blood pressure measurements using a validated oscillometric device (Omron BP). Calibration indicates calibration method according to Kelly and Fitchett; BA, brachial artery; RA, radial artery; CA, carotid artery; RTF, radial-to-aorta transfer function; CTF, carotid-to-aorta transfer function.

Materials and Methods

Subjects and Study Design

Healthy subjects aged 18 to 70 years were eligible. Smoking was not allowed for 3 hours before the study. Measurements were performed while subjects were in a quiet environment after at least 10 minutes of supine rest. Local blood pressures were in random order consecutively assessed with the calibration method (CAL) and the SphygmoCor (Figure 1). Assessment of local pressures was preceded and followed by conventional measurement of the ipsilateral BA blood pressure with a sphygmomanometer. The mean of arm blood pressure values was used to calibrate the 2 methods. The calibration method was used to calculate the PP at the radial (PP_{RA-CAL}) and carotid artery (CA) (PP_{CA-CAL}). The SphygmoCor was used to calculate the aortic PP from RA waveforms applying a radial-to-aorta transfer function (PP_{RTF}) and from CA waveforms applying a carotid-to-aorta transfer function (PP_{CTF}). All reported data are mean values of 3 consecutive high-quality recordings. The study was approved by the local ethics committee and written informed consent was obtained from all subjects.

Measurements and Derived Parameters

BA blood pressure was measured with a validated oscillometric device (Omron HEM-705CP; Omron Healthcare Europe), and the mean of the 3 stable (coefficient of variation <5%) consecutive measurements was subsequently used. MAP was estimated from the numeric integral of the BA pressure wave over time measured with an applanation tonometer, calibrated with the systolic and diastolic BA pressure. MAP was considered the level of agreement.21 Reproducibility was assessed by calculating the coefficients of variation. Differences in PP were examined by paired-samples t tests or Wilcoxon signed ranks tests for normal or not normal distributed variables, respectively. The effect of age, gender, height, body mass index, smoking status, PP, and BA PP on the differences in aortic pressure was assessed using multiple linear regression analysis. P<0.05 was considered significant. Statistical analysis was performed using SPSS 11.0.1 for Windows (SPSS Inc).

Statistics

Demographic data are presented as numbers or means±SD. Bland–Altman plots were used to evaluate the agreement between estimates of the same parameter; the mean difference between estimates reflects systematic bias and the SD of the differences [between estimates reflects], the level of agreement.21 Reproducibility was assessed by calculating the coefficients of variation. Differences in PP were examined by paired-samples t tests or Wilcoxon signed ranks tests for normal or not normal distributed variables, respectively. The effect of age, gender, height, body mass index, smoking status, PP, and BA PP on the differences in aortic PP between radial-to-aorta transfer function and reference method was assessed using multiple linear regression analysis. P<0.05 was considered significant. Statistical analysis was performed using SPSS 11.0.1 for Windows (SPSS Inc).

Results

Forty-four subjects entered the study. Subject characteristics are shown in Table 1. Peripheral and central PP according to different methods are given in Table 2. Reproducibility of the MAP, radial, and carotid systolic pressure obtained with the calibration method was high with a coefficient of variation of 0.9%, 1.6%, and 0.9%, respectively. The carotid-to-BA PP amplification was 3.1±5.4 mm Hg (7±13%) and was smaller

used (Millar SPT-301B probe; Millar Instruments, Houston, Tex). For the calibration method, a dedicated homemade data acquisition system was used consisting of a hardware set-up (NI SC 2345; National Instruments, Houston, Tex) connected to a personal computer and post-processing software written in Matlab 6.0 (The Mathworks). This device allowed to calculate an average waveform over a defined time period (Figure 2).

Aortic PP was assessed in several ways: (1) PP_{AO-RTF} was calculated according to the advocated SphygmoCor procedure, using a population based generalized radial-to-aorta transfer function with RA waveform calibration on BA blood pressure; (2) PP_{AO-RTF} was also used the radial-to-aorta transfer function, but RA waveform calibration was performed on RA pressures; and (3) PP_{AO-CTF} was obtained from CA waveforms, calibrated on the carotid pressures obtained with the calibration method, and using the carotid-to-aorta transfer function in the SphygmoCor. PP_{CA-CAL} was used as primary estimate of aortic pressure (reference method) and PP_{AO-CTF} as secondary estimate.

PP amplification between different arterial sites was expressed as the absolute difference between PPs at each site and in percent amplification. For example, PP amplification from brachial-to-RA (PP_{PRA-RA}) was calculated as follows: absolute PP_{PRA-RA}=|PP_{PRA-RA}−PP_{PRA}|, and in percent PP_{PRA-RA}=(PP_{PRA-RA}/PP_{PRA})×100.

Figure 2. Calibration method according to Kelly and Fitchett. Scaling of carotid pressure wave from brachial artery (systolic and diastolic) pressure and wave, assuming that the mean and diastolic pressures are constant throughout the large artery tree. SBP indicates systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure. The subscript BA indicates values at the brachial artery and CA at the carotid artery. The tonometer signal is in arbitrary units (AU).
TABLE 1. Subject Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males/females, n</td>
<td>21/23</td>
</tr>
<tr>
<td>Smokers, n</td>
<td>11</td>
</tr>
<tr>
<td>Age, y</td>
<td>46±12</td>
</tr>
<tr>
<td>Height, cm</td>
<td>170±11</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>24±3</td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td>118±12</td>
</tr>
<tr>
<td>Diastolic BP, mm Hg</td>
<td>72±10</td>
</tr>
<tr>
<td>Heart rate, beats/min</td>
<td>63±13</td>
</tr>
</tbody>
</table>

Data are numbers (n) or mean±SD. BP indicates blood pressure.

than the brachial-to-radial PP amplification of 5.8±5.1 mm Hg (12±11%) (P=0.002). Brachial-to-radial PP amplification was only dependent on gender (women less than men; P=0.006), not on age, height, body mass index, smoking, BA PP, and MAP.

PPAO×RTF was always lower than the aortic PP obtained with any of the 2 candidate reference methods (PPCA×CAL, PPAP×CTF). The difference with PPCA×CAL is shown in Figure 3a. The use of brachial instead of RA pressures to calibrate the radial pressure wave resulted in an underestimate of mean arterial pressure by 3.2±1.8 mm Hg. Calibration of the RA wave with RA pressures instead of BA pressures resulted in an increase of estimated central PP from 33.0±6.8 mm Hg (PPAO×RTF) to 37.1±8.2 mm Hg (PPAO×RTFimp). At the same time, the difference with the candidate reference methods decreased with 4 mm Hg (−9.7 to −5.7 mm Hg when compared with PPCA×CAL; −7.1 to −3.1 mm Hg when compared with PPAO×CTF) but remained statistically significant (Table 2). The difference with PPCA×CAL is shown in Figure 3b.

In multiple linear regression analysis, the difference between PPAO×RTF and PPCA×CAL appeared to be strongly dependent on PPAmplBA−RA and brachial PP, but not on MAP, age, gender, smoking status, height, or body mass index (Table 3). PPAmplBA−RA and brachial PP together explained 69% of the variation (63% for PPAmplBA−RA) between the 2 methods (adjusted R²=0.69, P<0.001).

Discussion

Estimation of central aortic hemodynamic parameters such as PP and augmentation index from the radial pulse using a transfer function has become common practice. Several validation studies confirmed the accuracy of the transfer function for estimation of both aortic PP and aortic augmentation index. In a majority of these studies, the pressure curve was calibrated using invasive blood pressure measurements. When noninvasive calibration was performed, conforming to the noninvasive nature of the technique, a considerable bias in the estimation of the central PP was observed. However, as in these studies, aortic pressures obtained from invasive measurements were compared with the SphygmoCor procedure calibrated on noninvasively obtained arm blood pressure, it was not clear whether the observed difference between methods was caused by the SphygmoCor procedure, the deviation of sphygmomanometer blood pressures from invasive pressures, or both. To eliminate this potential source of bias, in the present study, both SphygmoCor and calibration method were calibrated on the same blood pressure values obtained noninvasively with a validated device (Omron HEM 705 CP).

In the present study, we identified inadequate calibration caused by centrifugal PP amplification and transfer function effects as major source of bias in the estimation of the central PP using the SphygmoCor when compared with PPCA×CAL, a validated calibration method. Because the primary objective was to verify the accuracy of the SphygmoCor procedure as advocated by the manufacturer, we initially compared the PPAO×RTF with the PPCA×CAL, which yielded a systematic underestimation of 9.7±4.6 mm Hg by PPAO×RTF. This systematic bias is lower than the 19.0 to 24.8 mm Hg observed in studies comparing the PPAO×RTF with invasively measured central PP, and supports the view of O’Rourke et al that a large part of the difference found in these studies was caused by the difference between sphygmomanometer and invasive blood pressure values.

The present study identified a substantial PP amplification between brachial and RA (average 12%), larger than the carotid-to-brachial PP amplification. Because the Sphygmo-

TABLE 2. Peripheral and Central Pulse Pressures

<table>
<thead>
<tr>
<th>Peripheral Pulse Pressures Method</th>
<th>PP Mean±SD, mm Hg</th>
<th>Central PP Method</th>
<th>PP Mean±SD, mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>PPAO×CAL</td>
<td>42.7±8.9</td>
<td>SphygmoCor</td>
</tr>
<tr>
<td>Omron</td>
<td>PPRA</td>
<td>45.8±7.8</td>
<td>SphygmoCor</td>
</tr>
<tr>
<td>Calibration</td>
<td>PPRA×CAL</td>
<td>51.6±10.8</td>
<td>SphygmoCor</td>
</tr>
</tbody>
</table>

Aortic Pulse Pressures, Differences Between Test and Reference Method

<table>
<thead>
<tr>
<th>PP Difference</th>
<th>Mean±SD, mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPAO×RTF−PPAO×CTF</td>
<td>−9.7±4.6*</td>
</tr>
<tr>
<td>PPAO×RTFimp−PPAO×CTF</td>
<td>−7.1±3.6*</td>
</tr>
<tr>
<td>PPAO×RTFimp−PPAO×CAL</td>
<td>−5.7±2.8*</td>
</tr>
<tr>
<td>PPAO×CTF−PPAO×CAL</td>
<td>−3.1±2.3*</td>
</tr>
</tbody>
</table>

PP indicates pulse pressure.

*P<0.001.
Cor procedure advocates the use of brachial instead of RA pressure to calibrate the radial pressure wave, a substantial error is introduced accounting for ≈4 mm Hg of underestimation. Because PP amplification may vary considerably, the degree of underestimation by using brachial pressure values as a surrogate for RA pressure is unpredictable. The brachial-to-radial PP amplification largely determined the underestimation of aortic PP (estimated by PP_{CA–CAL}) by the advocated SphygmoCor procedure (PP_{AO–RTF}). The level of PP was the only additional but less important determinant of this underestimation.

After calibration of the RA pressure wave with RA pressure obtained with the calibration method (PP_{RA–CAL}) the difference between PP_{AO–RTFimp} and PP_{CA–CAL} decreased to 5.7 mm Hg. The question remains whether this residual difference can be attributed to the transfer function itself. We used the PP at the CA obtained with the calibration method PP_{CA–CAL} as surrogate for PP in the ascending aorta. The important question is whether PP_{CA–CAL} is a valid surrogate for aortic PP. Although some authors have shown that the PP in the common CA and in the ascending aorta is identical, other studies indicate a small difference.

In a validation study of the calibration method, CA PP was found on average 1.8±5.2 mm Hg higher than ascending aortic PP. Another way of obtaining surrogate aortic PP is to calculate aortic pressure from carotid waveforms via a carotid-to-aorta transfer function (PP_{AO–CFTR}), presuming that the carotid-to-aorta transfer function is valid. This method shows aortic PP to be 2.6 mm Hg lower than at the CA and reduces the residual underestimation of the aortic pressure to 3.1 mm Hg. Thus, depending on the candidate estimate of aortic PP, the residual underestimation is between 3.1 and 5.7 mm Hg. This residual underestimation of aortic pressure may be caused by the generalized population-based transfer function itself, but is larger than the 0.7±4.2 mm Hg found by Pauca et al in an invasive study in anesthetized patients.

The present study shows that depending on the candidate estimate of aortic PP used, the average error from the CA PP as surrogate for aortic PP (ranging between 0 and +2.6 mm Hg) is smaller than the average error (ranging between −3.1 and −5.7 mm Hg) from the improved SphygmoCor procedure using RA pressures. This supports the idea that CA pressure can be used as surrogate for central aortic pressure. A drawback of the calibration method and the improved SphygmoCor method is the need for an additional tonometry at the BA as long as reliable RA pressures from noninvasive devices are not available.

This study had some limitations. First, we did not have invasive blood pressure measurements in the present study. However, simultaneous comparison of invasive pressures at different arterial sites, like in the present study, might pose ethical problems, especially in a healthy population. In addition, the reference method had previously been validated against invasive measurements. Second, the calibration and SphygmoCor methods were performed consecutively and during this time blood pressure could have changed. To limit this bias, CAL and SphygmoCor procedures were performed in random order and both procedures were calibrated on the same BA blood pressure values. This procedure is presumed to limit systematic bias but cannot avoid variation between methods.

Perspectives

The use of BA pressure as surrogate for RA pressure in the advocated SphygmoCor procedure is an important source of error and should be avoided. This means a real need for an easy and reliable method to measure RA blood pressure noninvasively. Although oscillometric wrist sphygmomanometers have been developed, they do not provide RA pressures, because they have been calibrated on BA pressures. As long as direct accurate noninvasive measurement of RA pressure is not available, the more complex calibration.
method by Kelly and Fitchett remains advocated. The under-
estimation of central aortic PP caused by the radial-to-aorta
population-based transfer function itself is much less than
previously reported by some authors. However, its validity in
different situations has not been fully established. Future
research should further validate this and other transfer func-
tions. Progress could be made by automation of the calibra-
tion method proposed by Kelly and Fitchett and by develop-
ing alternative methods for handheld applanation tonometers
to obtain arterial pressure waves at different arterial sites.

References
P, Guize L. Pulse pressure: a predictor of long-term cardiovascular
mortality in a French male population. *Hypertension*. 1997;30:
1410–1415.

2. Millar JA, Lever AF, Burke V. Pulse pressure as a risk factor for
cardiovascular events in the MRC Mild Hypertension Trial. *J Hypertens.*

3. Mitchell GF, Moye LA, Braunwald E, Rouleau JL, Bernstein VM, Geltman
EM, Flaker GC, Pfeffer MA. Sphygmomanometrically determined pulse
pressure is a powerful independent predictor of recurrent events after
myocardial infarction in patients with impaired left ventricular function.

4. London GM, Blacher J, Lever AF, Gruer AP, Marchais SJ, Safar ME.
Arterial wave reflections and survival in end-stage renal failure. *Hypertension.*

5. Vlachopoulos C, O’Rourke MF. Haemodynamic basis for the development
of left ventricular failure in systolic hypertension and for its logical

6. Westerhof N, O’Rourke MF. Pulse pressure amplification.

7. Kelly RP, Gibbs HH, O’Rourke MF, Daley JE, Mang K, Morgan JJ,
Avolio AP. Nitroglycerin has more favourable effects on left ventricular
afterload than apparent from measurement of pressure in a peripheral

8. Pauca AL, Wallenfels Mf, Kon ND, Tucker WY. Does radial artery

and external left ventricular power output: a validation and repeatability

10. Van Bortel LM, Balkestein EJ, van der Heijden-Spek JJ, Vanmolkot FH,
Staessen JA, Kragten JA, Vredendal JW, Safar ME, Struijker Boudier
HA, Hoeks AP. Non-invasive assessment of local arterial pulse pressure:
comparison of applanation tonometry and echo-tracking. *J Hypertens.*
2001;19:1037–1044.

11. Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method
for estimating ascending aortic pressure from the radial artery pressure

12. Millasseau SC, Patel SJ, Redwood SR, Ritter JM, Chowienczyk PJ.
Pulse pressure waveform assessed from the peripheral pulse: is a transfer

utility of aortic pulses and pressures calculated from applanated radial-

14. Cloud GC, Rajkumar C, Kooner J, Cooke J, Bulpitt CJ. Estimation of
central aortic pressure by SphygmoCor requires intra-arterial peripheral

15. Davies JJ, Band MM, Pringle S, Ogston S, Struthers AD. Peripheral blood
pressure measurement is as good as applanation tonometry at predicting

2003;21:495–496.

18. Hope SA, Tay DB, Meredith IT, Cameron JD. Use of arterial transfer
functions for the derivation of aortic waveform characteristics. *J Hypertens.*

19. Hoek AP, Meinders JM, Dammers R. Applicability and benefit of

measuring devices: recommendations of the European Society of Hyper-

22. Wilkinson IB, Prasad K, Hall JR, Thomas A, MacCallum H, Webb DJ,
Frenneaux MP, Cockcroft JR. Increased central pulse pressure and aug-
mentation index in subjects with hypercholesterolemia. *J Am Coll Cardiol.*

der Arend BJ, Shu YE, Mackay LS, Webb DJ, Cockcroft JR. Pulse-wave
analysis: clinical evaluation of a noninvasive, widely applicable method
22:147–152.

24. Brooks B, Molyneaux L, Yue DK. Augmentation of central arterial

25. Brooks BA, Molyneaux LM, Yue DK. Augmentation of central arterial

26. Mahmud A, Feely J. Effect of smoking on arterial stiffness and pulse

MJ. Influence of drugs and gender on the arterial pulse wave and natri-
uretic peptide secretion in untreated patients with essential hypertension.

28. Savage MT, Ferro CJ, Pinder SJ, Tomson CR. Reproducibility of derived
central arterial waveforms in patients with chronic renal failure. *Clin Sci (Lond).*

29. Kelly RP, Millasseau SC, Ritter JM, Chowienczyk PJ. Vasoactive drugs
influence aortic augmentation index independently of pulse-wave

30. Chen CH, Ting CT, Nussacker A, Nevo E, Kass DA, Pak P, Wang SP,
Chang MS, Yin FC. Validation of carotid arterial tonometry as a means of
estimating augmentation index of ascending aortic pressure. *Hypertension.*

31. Chen CH, Nevo E, Fetkis B, Pak PH, Yin FC, Maughan WL, Kass DA.
Estimation of central aortic pressure waveform by mathematical trans-
formation of radial tonometry pressure. Validation of generalized transfer

32. Karamanoglu M, O’Rourke MF, Avolio AP, Kelly RP. An analysis of the
relationship between central aortic and peripheral upper limb pressure

33. Fetkis B, Nevo E, Chen CH, Kass DA. Parametric model derivation of
transfer function for noninvasive estimation of aortic pressure by radial

34. Takazawa K, O’Rourke M, Fukita M. Estimation of ascending aortic
pressure from radial arterial pressure using a generalised transfer
Noninvasive Assessment of Local Pulse Pressure: Importance of Brachial-to-Radial Pressure Amplification

Francis Verbeke, Patrick Segers, Steven Heireman, Raymond Vanholder, Pascal Verdonck and Luc M. Van Bortel

Hypertension. 2005;46:244-248; originally published online May 23, 2005;
doi: 10.1161/01.HYP.0000166723.07809.7e

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/46/1/244

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/