Dopamine is an endogenous catecholamine that modulates many cellular activities, including behavior, hormone synthesis and release, blood pressure, and transmembrane ion transport. Dopamine receptors are classified into D1-like receptors, comprised of D1 and D5 receptors, stimulate adenylyl cyclase activity, whereas D2-like receptors, composed of D2, D3, and D4 receptors, inhibit adenylyl cyclase activity and regulate/modulate the activity of several ion channels.

The increase in sodium excretion after a sodium load is regulated, in part, by renal paracrine activation of D1-like receptors. However, D2-like receptors may act, synergistically, with D1-like receptors to increase urinary sodium excretion. Thus, we found that the increase in sodium excretion induced by Z-1046, a dopamine receptor agonist, may be caused by a D3 receptor–mediated increase in total, as well as cell surface membrane D1 receptor expression, and direct D1 and D3 receptor interaction, both of which are impaired in SHRs. (Hypertension. 2006;47[part 2]:573-579.)

Key Words: receptors, dopamine ■ hypertension, essential ■ kidney ■ microscopy, confocal

Received September 23, 2005; first decision October 20, 2005; revision accepted November 30, 2005.

From the Department of Cardiology (C.Z., L.W.), Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China; Departments of Pediatrics (C.Z., Z.W., H.L., P.Y., S.Z., L.D.Z., P.A.J.), Physiology and Biophysics (P.A.J.), and Internal Medicine (G.M.E.), Georgetown University Medical Center, Washington, DC; Department of Physiology and Biophysics (U.H.), Case Western Reserve School of Medicine, Cleveland, Ohio; and Department of Pathology (R.A.F.), Virginia University for the Health Sciences, Charlottesville, Va.

Correspondence to Chunyu Zeng, Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, People’s Republic of China. E-mail cyzeng1@hotmail.com

© 2006 American Heart Association, Inc.

Hypertension is available at http://www.hypertensionaha.org

DOI: 10.1161/01.HYP.0000199983.24674.83

573
Methods

Cell Culture
Immortalized RPT cells from microdissected S1 segments of proximal tubules of 4- to 8-week-old Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs) were cultured at 37°C in 95% air/5% CO2 atmosphere in DMEM/F-12 with transferrin (5 μg/mL), insulin (5 μg/mL), epidermal growth factor (10 ng/mL), dexamethasone (4 μg/mL), and FBS 5% on a 100-mm Petri dish.23–27 Cells were made quiescent by incubation for 2 hours in medium without FBS before the addition of drugs.

Immunoblotting of D1 and D3 Receptors
The antibodies are polyclonal and IgG-purified or affinity-purified antipeptides. The amino acid sequence of the D1 receptor–immunizing peptide is 299-GSEEFPFQC-307 (Research Genetics).24–26,28 The amino acid sequence of the D3 receptor–immunizing peptide is 288-QPSSPGQTHGGLRY YSI C-306.6,23 The specificity of these antibodies has been reported.6,23–26

The cells were lysed in a lysis buffer, sonicated, placed on ice for 1 hour, and centrifuged at 16,000g for 30 minutes. The supernatants were stored at −70°C until use. After measuring the protein concentrations, the supernatants were mixed with Laemmli sample buffer, boiled for 5 minutes, subjected to electrophoresis, and then transferred electrophoretically onto nitrocellulose membranes. The transblots were probed with the D3 receptor antibody (1:250) or the D1 receptor antibody (1:1000) for 1 hour. The primary antibody binding was then probed by a peroxidase-labeled goat anti-rabbit IgG antiserum. The signal was detected using chemiluminescence and densitometry using Quantscan, as reported previously.23–26

The amount of protein transferred onto the membranes was verified by Ponceau-S staining and immunoblotting for α-actin.

Cell Surface D1 Receptor Expression
Cultured RPT cells were starved in serum-free medium for 2 hours and then treated with the D1 receptor agonist PD128907 (10−7 M) for varying periods (0, 15, and 30 minutes). Cell impermeable, non–cell-permeable biotinylated anti-D1 receptor antibodies (positive control) were used as the immunoprecipitating antibodies. The specificity of these antibodies has been confirmed.6,23–26

The D1 receptor was visualized using an IgG affinity-purified rabbit anti-rat D1 receptor antibody (1:300) followed by fluorescein isothiocyanate–conjugated goat anti-rabbit IgG antiserum. The signal was detected using band pass filters of 578 to 623 nm and 505 to 525 nm, respectively. The colocalization of D3 receptor and D1 receptor was quantified, as described previously.30

Materials
Rabbit anti-rat D1 antibody was purchased from Alpha Diagnostic International (D3R12A, San Antonio, TX). Mouse anti-D3 antibody was purchased from Zymed (32-0900, South San Francisco, CA). Rabbit anti-rat D3 receptor antibody was produced against a synthetic oligopeptide of the rat D3 receptor (amino acids 299 to 307; Research Genetics).23–26 PD128907 was purchased from Sigma. U99194A was from Research Biochemicals International. Peroxidase-conjugated streptavidin was purchased from Jackson ImmunoResearch Laboratory. Sulfoconjugated streptavidin was produced by Pierce. Other chemicals for various buffers were of the highest purity available and purchased either from Sigma or Gibco.

Statistical Analysis
The data are expressed as mean±SEM. Comparison within groups was made by repeated measures ANOVA (or paired t test when only 2 groups were compared), and comparison among groups was made by factorial ANOVA with Duncan’s test (or t test when only 2 groups were compared). A value of P<0.05 was considered significant.

Results

Activation of the D3 Receptor Increases D1 Receptor Expression in RPT Cells From WKY Rats
The D1 receptor agonist PD128907 increased D1 receptor expression in a concentration-dependent manner (Figure 1A). The concentration causing a 50% increase in D1 receptor expression was 6×10−9 M (Figure 1A). The increase in D1 receptor expression induced by PD128907 (10−7 M) was also time dependent; a significant increase was noted by 16 hours and lasted ≥30 hours (Figure 1B). The effect of PD128907 was exerted at the D1 receptor, because a D3 receptor antagonist, U99194A (10−5 M),31 which by itself had no effect on D1 receptor expression [control=0.8±0.1 density units (DU); PD128907=1.2±0.2 DU; and U99194A=0.7±0.1 DU], blocked the stimulatory effect of PD128907 (10−7 M) on D1 receptor expression at 24 hours (PD128907+U99194A=0.7±0.2 DU; n=5/group; Figure 1C).

In RPT cells from SHRs, PD128907 (10−7 M) had no effect on D1 receptor expression (WKY: control=1.0±0.2, PD128907=1.5±0.06; SHRs: control=0.9±0.1, PD128907=0.7±0.2 DU; n=8/group; Figure 1D).

D1 Receptors Colocalize With D3 Receptors in RPT Cells
In order determine whether D1 and D3 receptors can directly interact with each other, we studied the colocalization of D3 and D1 receptors in rat RPT cells using laser confocal microscopy and coimmunoprecipitation studies. As shown in Figure 2A and Figure 3, the D3 and D1 receptors colocalized
and coimmunoprecipitated in RPT cells from WKY rats. The 45-kDa band (Figure 3), representing the coimmunoprecipitated D3 and D1 receptors, was increased by a 24-hour treatment with the D3 receptor agonist PD128907 \(10^{-7}\) M in RPT cells from WKY rats but had no effect in SHRs (WKY: control = 21 ± 3, PD128907 = 35 ± 4; SHRs: control = 22 ± 4, PD128907 = 18 ± 3 DU; \(P<0.05\); \(n=8\); Figure 3). The basal cell surface colocalization of D1 receptor with D3 receptor is much greater in RPT cells from WKY (47 ± 3%, \(n=5\)) than in RPT cells from SHRs (12 ± 1 n = 5; \(P<0.001\); Figure 2A and 2B). The results of the confocal images cannot be equated with the immunoprecipitation data, because the latter used whole cells, whereas the quantification of colocalization could only be performed for cell surface expression.

Activation of the D3 Receptor Increases Cell Surface Membrane D1 Receptors in RPT Cells of WKY But Not SHRs

Because our previous short-term studies6,32 have shown a synergistic interaction between D1 and D3 receptors, we determined whether D3 receptor stimulation affects the cellular localization of D1 receptors. As shown in Figure 4, in WKY RPT cells, the D3 receptor agonist PD128907 \(10^{-7}\) M increased the amount of D1 receptors in cell surface membranes at 15 minutes and returned to baseline at 30 minutes.

Figure 1. Effect of the D3 receptor agonist PD128907 on D1 receptor expression in RPT cells from WKY and SHRs. (A) Concentration response of D1 receptor expression in RPT cells from WKY rats treated with PD128907. Immunoreactive D1 receptor expression was determined after 24-hour incubation with the indicated concentrations of PD128907. Results are expressed as the ratio of D1 receptor to \(\alpha\)-actin densities (\(n=6\); \(P<0.05\) vs control, ANOVA, Duncan’s test). (B) Time course of D1 receptor expression in RPT cells from WKY rats treated with the D3 receptor agonist PD128907 \(10^{-7}\) M. Cells were incubated for the indicated times with \(10^{-7}\) M PD128907. Results are expressed as the ratio of D1 receptor to \(\alpha\)-actin densities [\(n=7\); \(P<0.05\) vs control (0 time), ANOVA, Duncan’s test]. (C) Effect of the D3 receptor agonist PD128907 and antagonist U99194 on D1 receptor expression in RPT cells from WKY rats. The cells were incubated with the indicated reagents (PD128907, \(10^{-7}\) M; U99194, \(10^{-5}\) M) for 24 hours. Results are expressed as the ratio of D1 receptor to \(\alpha\)-actin densities (\(n=5\); \(P<0.05\) vs others, ANOVA, Duncan’s test). (D) Differential effects of the D3 receptor agonist PD128907 \(10^{-7}\) M/24 h on D1 receptor expression in RPT cells from WKY and SHRs. The cells were incubated at the indicated times and concentrations. Results are expressed as the ratio of D1 receptor to \(\alpha\)-actin densities (\(n=8\); \(P<0.05\) vs control, ANOVA, Duncan’s test).
In contrast, in SHR RPT cells, PD128907 did not increase cell surface membrane expression of D1 receptors and actually decreased it at 30 minutes. The basal level of cell surface membrane D1 receptors was also greater in WKY than in SHR cells (WKY: control=18±4 DU, 15 minutes=27±3 DU, 30 minutes=18±3 DU; SHR: control=6±1 DU, 15 minutes=7±2 DU, 30 minutes=2±0.7 DU; n=14; P<0.05).

Discussion

The effect of stimulation of D2-like receptors, independent of D1-like receptors, on sodium excretion has ranged from antinatriuresis, no effect, to natriuresis. Although bromocriptine, a D2-like agonist with similar selectivity for all D2-like receptors, has not been found to affect sodium excretion in vivo, it has been reported to increase Na⁺-K⁺-ATPase activity in RPTs in vitro. Some studies have found that the D2-like antagonist haloperidol had natriuretic effects. However, haloperidol does not distinguish among the D2-like receptors and can also bind to D1-like receptors in RPTs. The intrarenal infusion of another D2-like receptor antagonist, YM-09151, in chronically instrumented conscious dogs on a moderate sodium diet also increases sodium excretion, whereas the infusion of the D2-like agonist quinpirole, with a 35-fold selectivity on D3 receptor over the D2 receptor, results in a decrease in urine flow and sodium excretion. These studies suggest an antinatriuretic effect of D2-like receptors. In vitro studies have suggested that D2-like receptors, in concert with D1-like receptors, could synergistically act to decrease Na⁺-K⁺-ATPase and NHE3 exchanger activities in RPTs and brain striatal cells and inhibit sodium-phosphate cotransport in opossum kidney cells.

D1- and D2-like receptors synergistically increase sodium excretion in WKY rats. However, those in vivo studies are limited, because proximal tubular effects could not be distinguished from distal tubular effects, and those in vivo studies did not determine the specific D1-like and D2-like receptor subtypes that synergistically interact. As mentioned in the introduction, in the rat kidney, the major D2-like receptor in RPTs is the D$_2$ receptor. We now report that the D$_1$ and D$_3$ receptors colocalize and interact in rat RPT cells. A D$_3$
receptor agonist increases the coimmunoprecipitation of the D1 and D3 receptor. We propose the D1-like and D2-like receptors that synergize to influence renal function are the D1 and D3 receptor. We have provided evidence that the D1 receptor regulates D3 receptor expression. First, a D3 receptor agonist, PD128907, increased D1 receptor expression in a time- and concentration-dependent manner. Second, a D3 receptor antagonist alone had no effect on D1 receptor expression, but it completely blocked the effect of the D3 receptor agonist. The stimulatory effect of a D3 receptor agonist on D1 receptor expression was selective, because the same agonist decreased AT1 receptor expression, and technical problems in the analysis (differences in loading and transferring of proteins for the Western blots) could be excluded. We did not determine the mechanism by which the D1 receptor increases D1 receptor protein expression in these studies. However, our previous study showed that stimulation of the D1 receptor increased D1 receptor protein expression in RPT cells from WKY rats but decreased it in cells from SHRs. We also found that, in RPT cells, activation of the D1 receptor had no effect on D1 receptor mRNA levels in WKY but decreased it in SHR cells, indicating that the D1-like receptor upregulation of D1 receptor protein in WKY may be secondary to posttranscriptional or posttranslational (eg, decreased protein degradation) mechanisms, whereas in SHR cells, D1-like receptor downregulation of protein expression may occur at the transcriptional or posttranscriptional level. Based on these results, we presume that the regulation of the receptor expression occurs via similar mechanisms. However, the effect of D1 receptor stimulation, by PD128907, on D1 receptor mRNA needs to be studied. We also did not study the mechanism by which D1 receptor agonist stimulation increased D1 and D3 receptor coimmunoprecipitation. This could be because of the increase in D1 and D3 receptor expression or increased interaction via some adapter protein. The later remains speculative at this time.

In our previous in vivo study, Z1046, through D1/D2-like receptor synergism, increased sodium excretion in 80 minutes. The period was too short to be explained by increased D1 and D3 receptor expression. Because the activity of GPCRs is, in part, dependent on their localization on cell surface membranes, we also investigated the effect of D1 receptor stimulation on cell surface membrane expression of D1 receptors. Previous studies have shown that D1 receptors can be recruited to the cell surface membrane from the cytosol within minutes after D1 receptor stimulation. We now report that D1 receptor agonist stimulation can increase cell surface membrane expression of D1 receptors. We suggest that a D1 receptor–mediated increase in cell surface membrane expression of D1 receptors, rather than an increase in D1 receptor expression in the whole cell, is the mechanism for the synergism between D1 and D3 receptors to acutely increase sodium excretion. GPCR kinase 4 (GRK4) plays an important role in the desensitization of the human D1 receptors in RPTs. However, the first 20 minutes of homologous desensitization of the human D1 receptor are GRK independent, the mechanism of which remains to be determined. In the early and late stages of desensitization, sucrose, which prevents endocytosis, has no effect on total GRK expression but prevents the desensitization of the D1 receptor response. These data indicate that the desensitization of the human D1 receptor in renal RPT cells appears to involve the formation of endocytic vesicles and GRK-dependent and -independent mechanisms. Figure 4 shows that stimulation of the D1 receptor decreases D1 receptor expression at 30 minutes but not at 15 minutes in RPT cells from SHRs. This is consistent with the D1 receptor desensitization time frame. We assume that activation of the D1 receptor increases GRK4 activity, which, in turn, induces D1 receptor endocytosis in SHR cells. In another study, we found that stimulation of the D1 receptor activates GRK4 activity in human RPT cells.

Basal D1 receptor expression in surface membranes of RPT cells is decreased in SHRs relative to WKY rats. Furthermore, D1 receptor stimulation failed to increase D1 and D3 receptor expression in SHRs. Our previous studies also showed that the D1 receptor–mediated stimulation on D1 receptor expression is impaired in SHR RPT cells. We also found that the costimulation of D1-like and D3 receptors led to additive vasorelaxation in WKY rats but not in SHRs. Luippold et al reported that both expression and function of the renal D1 receptor are impaired in salt-sensitive Dahl rats as compared with salt-resistant Dahl rats. In contrast, these investigators did not find a defective response to the intravenous infusion of a D1 receptor agonist [R(+)-7-hydroxy-dipropylaminotetralin] in SHRs. However, the nonrenal systemic effects of D1 receptor stimulation may have obfuscated any potential differences between WKY and SHRs. The studies of Luippold et al in SHRs were also not performed in salt-loaded rats; moderate salt loading enhances the natriuretic effects of dopaminergic drugs. Indeed, we have preliminary data showing that the intrarenal arterial infusion of a D1 receptor agonist, PD128907, the ligand used in the

Figure 4. Effect of the D1 receptor agonist PD128907 on cell surface membrane D1 receptor expression in RPT cells from WKY and SHRs. The cells were incubated with PD128907 (10−7 M) for 15 or 30 minutes, and labeled with sulfosuccinimidyl-6-(biotinamido)hexanooate (250 μg/mL) for 20 minutes. Thereafter, the samples were immunoprecipitated with anti-D1 receptor antibody and immunoblotted with avidin-conjugated peroxidase. Results are expressed as relative DU (##P<0.05 vs control; *P<0.05 vs SHR; n=14). Note that more protein was needed to visualize the D1 receptor on cell surface membranes of SHRs relative to WKY rats. One set of immunoblots is depicted on top of the bar graphs. The molecular size of the immunoprecipitated D1 receptor is 80 KDa.
current studies, increased sodium excretion in salt-loaded WKY rats but not SHRs.49 We have reported that R(+)7-hydroxy-dipropylaminotetralin can inhibit both NHE1 and NHE3 activity in RPT cells from 4- to 8-week-old WKY rats and SHRs.50,51 In RPTs from 12-week-old rats, the ability of R(+)7-hydroxy-dipropylaminotetralin to inhibit NHE activity is greater in WKY rats and than in SHRs (L.D. Asico, P.A. Jose, unpublished studies, 2004). We suggest that in adult (12-week-old) SHRs, D1, D3, D4, and D5 receptors can inhibit NHE activity, NHE3 to a lesser extent, because it is expressed in luminal and subluminal membranes of rat RPT cells where GRK4 is also expressed, and NHE1 to a greater extent, because it is expressed in basolateral membranes. GRK4 is not expressed in basolateral membranes of rat RPT cells (Z. Wang, P.A. Jose, unpublished data, 2004). The inhibitory effect of D1 receptors on NHE3 activity is impaired in SHRs in any age.1,3,50,52 Thus, our current and previous data strongly suggest that deficiency in D3 receptors and D3/D1 interaction is present in spontaneous hypertension.

In summary, we have demonstrated that D1 receptors positively regulate the expression of D3 receptors in rat RPT cells. Furthermore, D1 and D3 receptors coimmunoprecipitate in RPT cells, and D1 receptor agonist stimulation enhances the interaction between these two GPCRs. In the RPT cells from SHRs, this interaction between D1 and D3 receptors is impaired.

Perspectives

Dopamine receptors are classified into 2 groups, D1-like (D1) and D2-like receptor (D2, D3, and D4) subtypes based on their structure and pharmacology.1–3 In RPTs, D1, D3, D4, and D5 receptors are expressed.13,14,16,20 Previous studies have shown that stimulation of the D1-like or D1 receptor induces diuresis and natriuresis, which are impaired in SHRs.1,3,6,49,53

Acknowledgments

These studies were supported in part by grants from the National Institutes of Health, HL23081, DK39308, HL68686, DK52612, HL62211, HL41618, and HL074940 and National Natural Science Foundation of China 30470728.

References

7. Bertorello AM, Hopfield JF, Aperia A, Greengard P. Inhibition of dopamine D2 receptors on NHE3 activity is impaired in SHRs in any age.1,3,50,52 Thus, our current and previous data strongly suggest that deficiency in D3 receptors and D3/D1 interaction is present in spontaneous hypertension.

In summary, we have demonstrated that D1 receptors positively regulate the expression of D3 receptors in rat RPT cells. Furthermore, D1 and D3 receptors coimmunoprecipitate in RPT cells, and D1 receptor agonist stimulation enhances the interaction between these two GPCRs. In the RPT cells from SHRs, this interaction between D1 and D3 receptors is impaired.

D₃ Dopamine Receptor Directly Interacts With D₁ Dopamine Receptor in Immortalized Renal Proximal Tubule Cells

Hypertension. 2006;47:573-579; originally published online January 9, 2006; doi: 10.1161/01.HYP.0000199983.24674.83

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/47/3/573

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/