It has long been hypothesized that the peripheral microcirculation plays a critical role in hypertension pathophysiology.1,2 In its initial stages, elevated blood pressure (BP) elicits an autoregulatory process that results in an increased arteriolar tone, narrowing of precapillary arterioles, and an increase in peripheral vascular resistance. This process, in turn, augments additional BP elevation, creating a vicious cycle that is well known to hypertension researchers. However, scientific progress in this area has been partly limited by difficulties in evaluating the human peripheral microcirculation in vivo. In the last few years, advances in retinal photography and computing technologies have made feasible objective measurement of small vessel size from digital retinal images.3 Several large, population-based studies have applied these new techniques to quantitatively measure retinal vessel diameters and have documented a consistent gradient association between elevated BP and narrowed retinal arterioles.3–6 Of greater significance, these studies now show that retinal arteriolar narrowing may also predict future BP elevation in previously normotensive persons.7–9 Thus, generalizing arteriolar narrowing seen in the retina may be viewed as a preclinical marker of hypertension.7–10

A key question then is whether retinal arteriolar diameter or the susceptibility of these small vessels to hemodynamic insults, including BP levels within a normal range, is genetically determined. The study by Xing et al11 in this issue of *Hypertension* is, therefore, important as being the first study to investigate the genetic basis of retinal vessel diameters using genome-wide linkage. In their population-based sample, Xing et al11 found that retinal arteriolar and venular diameter was linked to multiple genetic loci. Some loci were unique for arterioles or venules, and others were common to both. Additionally, the linkage regions for retinal vessel diameters appeared to overlap with regions that have been associated previously with essential hypertension, endothelial dysfunction (endothelial nitric oxide synthase–related pathways) or vasculogenesis (regions of growth factors or their receptors; Table 2 in Reference 11).

These findings are novel and may contribute additional insights into the pathogenesis and the clinical management of hypertension in a number of ways. First, the study provides one of the first lines of evidence that structural changes in the microcirculation of retina may have genetic determinants, supporting the concept that peripheral vascular resistance may be the initial site for hypertension development. Second, these results potentially allow other researchers to use the retinal circulation as a microvascular bed to better understand the complex genetic–environmental interaction pathways involved in the pathogenesis of hypertension. For example, it is possible that individuals who are genetically susceptible to retinal arteriolar narrowing may also be more reactive to environmental triggers (eg, high dietary salt intake), thus having an increased likelihood of entering the vicious cycle of increased peripheral vascular resistance and elevated BP. Third, the genetics of retinal small vessel disease may provide an alternative to conventional empirical antihypertensive pharmacological therapy.

As the authors state, replication of their results in other populations, fine mapping of candidate genes, and understanding specific genetic functions will help to additionally clarify the genetic basis of retinal vessel diameter. Ultimately, the elucidation of the genetic basis of hypertension and gene–environmental interactions responsible for the development of hypertension is a major challenge. With the collaboration of epidemiology and genetics research teams, the use of currently advancing genetic and statistical techniques, and basic science experiments in vivo and in vitro, this goal is apparently achievable, and we have moved one important step ahead with these new findings by Xing et al11

References

3. Sharrett AR, Hubbard LD, Cooper LS, Sorlie PD, Brothers RJ, Nieto FJ, Pinsky JL, Klein R. Retinal arteriolar diameters and elevated blood
Genetic Determinants of Retinal Vascular Caliber: Additional Insights Into Hypertension Pathogenesis
Jie Jin Wang and Tien Yin Wong

Hypertension. 2006;47:644-645; originally published online February 27, 2006; doi: 10.1161/01.HYP.0000208303.74884.78
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/47/4/644

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/