Blood Pressure in Mutant Rats Lacking the 5-Hydroxytryptamine Transporter

To the Editor:

Although 5-HT uptake inhibitors are widely used as antidepressants, the role of 5-HT in the control of systemic blood pressure is far from clear.1 In a recent issue of Hypertension, Ni et al reported that 5-hydroxytryptamine (5-HT) transporter (SERT) expression was increased, whereas SERT function was decreased in aorta of rats with DOCA salt and N-nitro-L-arginine (L-NNA)-induced hypertension.2 We have observed that several 5-HT receptors are induced in leukocytes of hypertensive patients.3 These 2 observations could point at a functional response of the serotonin system to counter prohypertensive forces. We used the recently generated and unique SERT knockout rat to investigate whether the constitutive absence of SERT affected blood pressure and aggravated the development of hypertension and renal damage on NO synthesis inhibition.

A target-selected \textit{N} \textit{ethyl}-\textit{N} \textit{nitroso}urea–driven mutagenesis approach was used in Wistar rats to inactivate genes.4 High-throughput resequencing of genes of interest in a library of mutant rats resulted in the identification of a premature stop codon in the serotonin transporter. We have established that the homozygous SERT knockout (SERT\textminus/\textminus) rat completely lacks functional SERT in the brain (data not shown). Furthermore, 5-HT in blood platelets, which plays a crucial role in vasoconstriction and has mitogenic activity in vascular smooth muscle, was almost completely lacking in SERT\textminus/\textminus rats (Figure).

To characterize the SERT\textminus/\textminus rat with respect to the cardiovascular system, we measured systolic blood pressure (SBP) in female SERT\textminus/\textminus, SERT\textplus/\textminus, and SERT\textplus/\textplus rats under control conditions and during chronic L-NNA administration (500 mg/L of drinking water). Under control conditions, there were no differences in SBP between genotypes. Left ventricular (LV) weight/body weight and increases in SBP and LV/body weight during L-NNA (both P<0.01; 2-way ANOVA) were similar in all 3 of the groups (Table). Furthermore, under control conditions or L-NNA treatment, no differences were found in proteinuria, plasma urea and creatinine, and renal morphology (data not shown).

SERT-deficient mice also display normal blood pressure, although LV weight is reduced.5 It is at this functional level that the present data complement the data presented by Ni et al.2 From our analysis in the SERT\textminus/\textminus rat, it seems that the integrative role for SERT on blood pressure control by systemic hemodynamics and by the kidney to protect against the hypertensive effects of NO-shortage is limited. Furthermore, a protective role against glomerular damage caused by NO deficiency could not be substantiated.

Disclosures

None.

| SBP (mm Hg) and LV/Body Weight (mg/g) Measured Under Control Conditions and During 3 Weeks of L-NNA Treatment in Female SERT-/\textminus, SERT+/-, and SERT++/\textplus Rats |
|---|---|---|---|---|---|
| Groups | N | Baseline | Week 1 | Week 2 | Week 3 |
| Control conditions |
SERT+/-	5	115±6	110±2	108±3	n.m.
SERT+/-	4	117±6	109±4	117±4	n.m.
SERT++/\textplus	5	109±3	125±5	114±3	n.m.
N(o)-nitro-L-arginine					
SERT+/-	4	109±4	133±5	153±5	157±9
SERT+/-	4	127±9	152±4	174±1	178±13
SERT++/\textplus	4	114±5	137±12	157±11	166±2

Mean±SEM, n.m. indicates not measured.

\(©\) 2006 American Heart Association, Inc.

\(\text{Hypertension}\) is available at http://www.hypertensionaha.org

DOI: 10.1161/01.HYP.0000246306.61289.d8

Blood Pressure in Mutant Rats Lacking the 5-Hydroxytryptamine Transporter
Judith Homberg, Josine Mudde, Branko Braam, Bart Ellenbroek, Edwin Cuppen and Jaap A. Joles

Hypertension. 2006;48:e115-e116; originally published online October 9, 2006;
doi: 10.1161/01.HYP.0000246306.61289.d8

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/48/6/e115

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/