Effect of Anteroventral Third Ventricle Lesions on Vascular Sodium-Pump Activity in Two-Kidney Goldblatt Hypertension

EMEL SONGU-MIZE, PH.D., STEVE L. BEALER, PH.D., AND R. WILLIAM CALDWELL, PH.D.

SUMMARY We studied the effects of anteroventral third ventricle (AV3V) lesions on the vascular Na⁺-pump activity and blood pressure of rats prepared by the two-kidney Goldblatt procedure. Blood pressures and Na⁺-pump activity of the isolated tail arteries, measured as ouabain-sensitive ⁸⁶Rb⁺-uptake, were determined in rats with renal artery clips, rats with AV3V lesions, and rats with AV3V lesions. Rats with renal artery clips developed higher blood pressures (40%) and higher vascular Na⁺-pump activity (20%-35%) than rats with no renal clips. Placement of AV3V lesions prior to the placement of renal clips prevented the increase in blood pressure and the increase in vascular Na⁺-pump activity. Plasma potassium and creatinine concentrations, nonspecific ⁸⁶Rb⁺-uptake, and hematocrit were not different among these groups. Plasma sodium concentration was elevated in the AV3V lesioned control group. These experiments suggest a possible role of this CNS region in the regulation of vascular Na⁺-pump function during hypertensive states.

(Hypertension 5 (supp I): I-89-I-93, 1983)

KEY WORDS • two-kidney, one clip Goldblatt hypertension • Na⁺-pump activity • ⁸⁶Rb⁺-uptake • AV3V lesion • tail artery • renal artery clips

THE biochemical correlate of the electrogenic Na⁺-pump, Na⁺, K⁺-ATPase, is responsible for the maintenance of the cellular membrane potential and thus contributes to vascular smooth muscle tone.¹⁻³ Changes in vascular Na⁺-pump activity and monovalent cation transport have been reported in animal models and several forms of human hypertension.⁴⁻⁵ Several models of hypertension with expanded fluid volumes are stated to exhibit a lowered vascular Na⁺-pump activity.⁴ DOCA-salt,⁵ reduced renal-mass,⁷ one-kidney, one wrapped⁸ and one-kidney, one clip Goldblatt hypertension⁴ are among these. However, other investigators have found increased vascular Na⁺-pump activity in some types of hypertension.⁴⁻³

From the Departments of Pharmacology and Physiology and Biophysics, University of Tennessee, Center for the Health Sciences, Memphis, Tennessee.

Supported by an American Heart Association, Post Doctoral Fellowship Award and Research Grants HL-17796 and HL-25877 from the National Heart, Lung, and Blood Institute.

Address for reprints: Dr. Emel Songu-Mize, Department of Pharmacology, UTCHS, 874 Union Avenue, Memphis, Tennessee 38163.
Methods

Male Sprague-Dawley rats weighing 170–210 g, (purchased from Harlan Company, Madison, Wisconsin) were used throughout these experiments. Systolic blood pressures and vascular Na\(^+\)-pump activities were measured in all groups of rats studied.

Experiment 1

Two groups of rats were studied: 1) two-kidney, Goldblatt hypertensive rats with left renal artery clips of 0.2 mm i.d.; and 2) sham-operated controls with no renal artery clips.

Experiment 2

Four groups of rats were studied. One group of rats received AV3V lesions prior to placement of renal artery clips (Group LG). The second group also received AV3V lesions, but no renal artery clips (Group LC). The third group underwent sham-lesion surgery and received silver clips (Group SG). The fourth group underwent sham-lesion surgery but received no clips (Group SC).

Experimental Protocol

Systolic blood pressure measurements were made in the conscious state, once prior to any treatment, and then once weekly throughout the experiment by tail cuff plethysmography.

Sodium-pump activity of the isolated tail arteries was assayed 6 to 7 weeks after the initiation of the Goldblatt procedures by measuring \(^{86}\text{Rb}^+\)-uptake with methods similar to those described previously.\(^1^1\) Specific uptake of \(^{86}\text{Rb}^+\) (nmol/mg wet weight per 15 minutes) was determined as the difference between uptake in the absence and presence of 1.0 mM ouabain. \(^{86}\text{Rb}^+\)-uptake in the presence of ouabain, termed nonspecific uptake, reflects the distribution of \(^{86}\text{Rb}^+\) in extracellular spaces and passive penetration into the cells. Results are expressed relative to wet weight, as the wet weight to dry weight ratio of the vascular tissue was found to be the same in each group.

For the placement of the AV3V lesions, rats were subjected to a DC current of 2.5 mA for 15 seconds in the AV3V region of the brain, or underwent identical surgical procedures\(^1^3\) except that no current was passed. This procedure has been previously described in detail.\(^1^3\) The extent and the location of the lesions were verified histologically upon completion of the experiments and data were discarded from rats that did not receive bilateral periependymal damage in the AV3V region. Only the rats in Experiment 2 received AV3V lesions.

Rats weighing 190 to 210 g underwent surgery for the placement of a silver clip (0.2 mm i.d.) on the left renal artery. The right kidney was left untouched. Rats of Experiment 2 were allowed to recover from the brain surgery before the placement of the renal artery clips. This modification of the two-kidney Goldblatt hypertension procedure was adopted from Brooks et al.\(^1^6\), and the silver clips were prepared in our laboratory as described by those authors. Control rats underwent sham-surgical procedures but did not receive renal artery clips.

Flame photometry (Model 343, Instrumentation Laboratories, Watertown, Massachusetts) was used to measure the plasma sodium and potassium concentrations. Hematocrit and plasma creatinine measurements were also made.

Data are reported as mean ± se. Data were compared using Student's \(t\) test (Experiment 1) and one-way analysis of variance and Newman-Keuls \(a\) posteriori test (Experiment 2) to evaluate the differences between multiple means.

Results

Initial, pretreatment systolic blood pressure values were similar in all groups. The combined mean was 115 ± 2 mm Hg, \(n = 50\).

Experiment 1

Figure 1 shows the systolic blood pressure of rats after placement of renal artery clips or sham-surgery (control group). There were significant differences between the blood pressures of the rats in the Goldblatt group and the control group beginning with the 2nd week after this procedure. Blood pressures of rats in the Goldblatt group rose to 150 mm Hg in the 2nd week, and to 175 mm Hg by the end of the 5th week and remained stable at 175–185 mm Hg through the weeks after clip placement.

![Figure 1. Development of two-kidney Goldblatt hypertension in rats after the placement of renal artery clips of 0.2 mm diameter (••). Control rats (O——O) underwent a similar surgical procedure, but did not receive clips.](http://hyper.ahajournals.org/)

Figure 1. Development of two-kidney Goldblatt hypertension in rats after the placement of renal artery clips of 0.2 mm diameter (••). Control rats (O——O) underwent a similar surgical procedure, but did not receive clips.
TABLE 1. Sodium Pump Activity, Systolic Blood Pressure, Plasma Sodium, Potassium, and Hematocrit Measurements in Two-Kidney, One Clip Goldblatt Hypertension

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Specific $^{86}\text{Rb}^+$-uptake (nmol/mg/15 min)</th>
<th>Nonspecific $^{86}\text{Rb}^+$-uptake (nmol/mg/15 min)</th>
<th>Systolic blood pressure (mm Hg)</th>
<th>$[\text{Na}^+]$ (mEq/liter)</th>
<th>$[\text{K}^+]$ (mEq/liter)</th>
<th>Hematocrit (%)</th>
<th>No. of animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.326±0.018</td>
<td>0.073±0.005</td>
<td>138±5</td>
<td>135.4±4.3</td>
<td>3.20±0.11</td>
<td>41±1</td>
<td>8</td>
</tr>
<tr>
<td>Goldblatt</td>
<td>0.443±0.030*</td>
<td>0.077±0.003</td>
<td>178±8†</td>
<td>135.8±1.8</td>
<td>3.12±0.07</td>
<td>42±1</td>
<td>15</td>
</tr>
</tbody>
</table>

*p < 0.05 compared to control.
†p < 0.001 compared to control.

TABLE 2. Effect of AV3V Lesions on Nonspecific Rubidium Uptake, Plasma Sodium, Potassium, Creatinine and Hematocrit Values in Two-Kidney, One Clip Goldblatt Hypertension

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Nonspecific $^{86}\text{Rb}^+$-uptake (nmol/mg/15 min)</th>
<th>$[\text{Na}^+]$ (mEq/liter)</th>
<th>$[\text{K}^+]$ (mEq/liter)</th>
<th>Creatinine (mg/100 ml)</th>
<th>Hematocrit (%)</th>
<th>No. of animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>0.059±0.003</td>
<td>143.1±0.5</td>
<td>3.59±0.10</td>
<td>0.3±0.01</td>
<td>43±1</td>
<td>12</td>
</tr>
<tr>
<td>SG</td>
<td>0.059±0.006</td>
<td>143.2±1.1</td>
<td>3.60±0.15</td>
<td>0.4±0.02</td>
<td>41±1</td>
<td>9</td>
</tr>
<tr>
<td>LC</td>
<td>0.047±0.004</td>
<td>146.3±0.4</td>
<td>3.85±0.16</td>
<td>0.3±0.01</td>
<td>40±1</td>
<td>8</td>
</tr>
<tr>
<td>LG</td>
<td>0.064±0.008</td>
<td>141.9±2.5</td>
<td>3.58±0.06</td>
<td>0.2±0.02</td>
<td>41±1</td>
<td>6</td>
</tr>
</tbody>
</table>

SC = sham-operated control rats, no clips; SG = sham-operated rats with clips; LC = AV3V-lesioned control rats, no clips; LG = AV3V-lesioned rats with clips.

7th week; pressures of the control group remained unchanged over this period. ^{86}Rb-uptake in the tail arteries of these rats was measured between the 6th and the 7th weeks (table 1). A significant increase (35%) was observed in the ouabain-sensitive (specific) $^{86}\text{Rb}^+$-uptake in the tail arteries of the Goldblatt group compared to the control group. There were no significant differences in the plasma potassium or sodium concentrations, hematocrit values or nonspecific $^{86}\text{Rb}^+$-uptake between Goldblatt hypertensive rats and the control group (table 1).

Experiment 2
Rats that received renal artery clips following sham lesions (Group SG) developed significantly higher systolic blood pressures than sham-lesion rats without clips (Group SC). AV3V lesions when introduced prior to the placement of the arterial clips (Group LG) prevented the increase in blood pressure normally caused by renal artery clipping. In addition, rats with AV3V lesions without renal artery clips (Group LC) had blood pressures similar to those of Group SC rats, indicating that AV3V lesions alone do not alter blood pressure (fig. 2).

Vascular Na$^+$-pump activity in Group SG was increased by 20% ($p < 0.01$) compared to Group SC. Na$^+$-pump activity in Group LG was the same as Group SC indicating that the AV3V lesion prevented the elevation of Na$^+$-pump activity associated with Goldblatt hypertension. AV3V lesions did not alter basal vascular Na$^+$-pump activity, as values for Groups SC and LC were similar (fig. 2).
By the destruction of the AV3V area prior to the advanced stage of DOCA-salt hypertension is prevented and two-kidney, one clip model. A number of recent studies have reported in human types and several animal models. It has been suggested by Haddy and his colleagues that hypertension characterized by lowered vascular Na+-pump activity. For example, animals with DOCA-salt, reduced renal mass, one-kidney, one wrapped and one-kidney, one clip Goldblatt hypertension exhibit reduced vascular Na+-pump activity. Those authors suggested that a ouabain-like humoral substance might be responsible for Na+-pump suppression in these models. However, other investigators have recently reported increased vascular Na+-pump activity in some types of hypertension characterized by expanded fluid volume. For example, Overbeck's laboratory has found that DOCA-salt one- and two-kidney, one clip Goldblatt and salt-sensitive Dahl rats display increased pump activity. With regard to DOCA-salt hypertension, a reason for the discrepancy may be differences in the stage of hypertension when vascular Na+-pump activity was measured. This form of hypertension is characterized by a fluid volume expansion at the early or benign stage, and a volume loss at the late or malignant stage. In fact we have recently reported suppressed vascular Na+-pump activity at the late phase of DOCA-salt hypertension, but we have also noted that the pump activity is increased at the early stages of this form of hypertension (unpublished observations). We have additionally demonstrated that plasma taken from the rats at the advanced stage of DOCA-salt hypertension inhibits Na+-pump activity in vascular tissue isolated from untreated rats, suggesting the existence of a plasma factor.

During the development of two-kidney, one clip Goldblatt hypertension in its benign stage, fluid volume expansion has been shown to occur. In the present study, we have produced a benign form of two-kidney, one clip Goldblatt hypertension: the systolic blood pressure did not exceed 190 mm Hg and plasma sodium, potassium, and creatinine levels were normal. We have shown that vascular Na+-pump activity is increased in contrast to the DOCA rats of late hypertensive stage. Malignant hypertension in two-kidney Goldblatt hypertension is associated with loss of sodium, thus reduction of extracellular fluid volume, and kidney damage resembling the malignant stages of DOCA-salt hypertension. We therefore predict that vascular Na+-pump would be suppressed at this stage of Goldblatt hypertension.

Although simultaneous measurements of fluid volume and Na+-pump activity have not been made in these studies, the existence of a direct correlation between these two variables appears probable. Thus, if inhibition of the vascular Na+-pump is due to a digitalis-like substance, vascular volume should be considered as a possible determinant of the release of this substance. Moreover, the AV3V region may be the locus of the central relay area controlling release of the factor. Our findings, that AV3V lesions prevent changes in Na+-pump activity associated with hypertension in both DOCA-salt and two-kidney Goldblatt rats, support this proposition.

Acknowledgments

We thank Janet T. Elaim for technical assistance, Lee Danley for preparing the figures, and Susan Engbarth for typing the manuscript. We also wish to thank Bennie Brooks for generously sharing his expertise with us in preparing the rats for Goldblatt hypertension.

References

2. Hendrickx H, Casteels R: Electrogenic sodium pump in arteri-

amento muscle: Physiologic and pharmacologic significance. Annu

Rev Pharmacol Toxicol 20: 129, 1980
3. Thomas RC: Electrogenic sodium pump in arteri-

al smooth muscle cells. Pflugers Arch 346: 299, 1974
4. Pammani MB, Clough DL, Huot SJ, Haddy FJ: Sodium-potas-

sium pump activity in experimental hypertension. In Vasodila-

tion, edited by Vanhoutte PM, Leusen J. New York: Raven

Press, 1981, p 391
5. Tosteson DC, Adragna N, Bize I, Solomon H, Canessa M:

6. Pammani MB, Clough DL, Haddy FJ: Altered activity of the

Na+-K+ pump in arteries with steroid hypertension. Clin Res

26: 511A, 1978

pump activity in tail arteries of reduced renal mass hyperten-

Effect of anteroventral third ventricle lesions on vascular sodium-pump activity in two-kidney Goldblatt hypertension.
E Songu-Mize, S L Bealer and R W Caldwell

Hypertension. 1983;5:189
doi: 10.1161/01.HYP.5.2_Pt_2.I89

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1983 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/5/2_Pt_2/I89

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Hypertension* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Hypertension* is online at:
http://hyper.ahajournals.org//subscriptions/